Suppr超能文献

氮依赖的根系结构变化的信号通路:从模式物种到作物。

Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species.

机构信息

Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland, OT Gatersleben, Germany.

出版信息

J Exp Bot. 2020 Jul 25;71(15):4393-4404. doi: 10.1093/jxb/eraa033.

Abstract

Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.

摘要

在所有必需的矿物质元素中,氮(N)的需求量最大,因此通常是植物生长的限制因素。植物根系以水溶性硝酸盐、铵盐的形式以及取决于其丰度的低分子量有机 N 的形式吸收 N。在土壤中,这些 N 形式的有效性和组成会随空间和时间而变化,这使根系暴露于各种局部 N 信号中,这些信号与反映地上部 N 营养状况的系统信号一起调节根系系统结构。揭示依赖于 N 的信号转导的分子机制为作物培育中提高 N 吸收效率优化根系系统结构提供了巨大的潜力。在这篇综述中,我们总结了源自外部 N 形式或内部 N 营养状况的突出的信号转导机制及其潜在的分子调控因子,这些机制和因子调节包括根毛形成和向重力性在内的根发育。我们还比较了这些途径在拟南芥和禾本科植物物种之间的当前知识状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f318/7382383/7c8540b82e49/eraa033f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验