Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China; Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources, Guangdong Key Laboratory of Urban Informatics, Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China.
Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 800046, China; Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.
Sci Total Environ. 2020 Mar 10;707:136092. doi: 10.1016/j.scitotenv.2019.136092. Epub 2019 Dec 13.
Accurate assessment of soil salinization is considered as one of the most important steps in combating global climate change, especially in arid and semi-arid regions. Multi-spectral remote sensing (RS) data including Landsat series provides the potential for frequent surveys for soil salinization at various scales and resolutions. Additionally, the recently launched Sentinel-2 satellite constellation has temporal revisiting frequency of 5 days, which has been proven to be an ideal approach to assess soil salinity. Yet, studies on detailed comparison in soil salinity tracking between Landsat-8 OLI and Sentinel-2 MSI remain limited. For this purpose, we collected a total of 64 topsoil samples in an arid desert region, the Ebinur Lake Wetland National Nature Reserve (ELWNNR) to compare the monitoring accuracy between Landsat-8 OLI and Sentinel-2 MSI. In this study, the Cubist model was trained using RS-derived covariates (spectral bands, Tasseled Cap transformation-derived wetness (TCW), and satellite salinity indices) and laboratory measured electrical conductivity of 1:5 soil:water extract (EC). The results showed that the measured soil salinity had a significant correlation with surface soil moisture (Pearson's r = 0.75). The introduction of TCW generated satisfactory estimating performance. Compared with OLI dataset, the combination of MSI dataset and Cubist model yielded overall better model performance and accuracy measures (R = 0.912, RMSE = 6.462 dS m, NRMSE = 9.226%, RPD = 3.400 and RPIQ = 6.824, respectively). The differences between Landsat-8 OLI and Sentinel-2 MSI were distinguishable. In conclusion, MSI image with finer spatial resolution performed better than OLI. Combining RS data sets and their derived TCW within a Cubist framework yielded accurate regional salinity map. The increased temporal revisiting frequency and spectral resolution of MSI data are expected to be positive enhancements to the acquisition of high-quality soil salinity information of desert soils.
准确评估土壤盐渍化被认为是应对全球气候变化的最重要步骤之一,特别是在干旱和半干旱地区。多光谱遥感 (RS) 数据包括 Landsat 系列,为在各种尺度和分辨率下进行土壤盐渍化的频繁调查提供了潜力。此外,最近发射的 Sentinel-2 卫星星座具有 5 天的时间重访频率,这已被证明是评估土壤盐分的理想方法。然而,关于 Landsat-8 OLI 和 Sentinel-2 MSI 之间在土壤盐分跟踪方面的详细比较研究仍然有限。为此,我们在干旱沙漠地区——艾比湖湿地国家级自然保护区 (ELWNNR) 共采集了 64 个表层土壤样本,以比较 Landsat-8 OLI 和 Sentinel-2 MSI 的监测精度。在这项研究中,使用 RS 衍生的协变量(光谱波段、缨帽变换衍生的湿度 (TCW) 和卫星盐度指数)和实验室测量的 1:5 土壤-水浸提液的电导率 (EC) 对 Cubist 模型进行了训练。结果表明,测量的土壤盐分与地表土壤湿度有显著的相关性(Pearson r=0.75)。引入 TCW 后产生了令人满意的估算性能。与 OLI 数据集相比,MSI 数据集和 Cubist 模型的组合产生了整体更好的模型性能和精度度量(R=0.912、RMSE=6.462 dS m、NRMSE=9.226%、RPD=3.400 和 RPIQ=6.824)。Landsat-8 OLI 和 Sentinel-2 MSI 之间的差异是可分辨的。总之,空间分辨率更高的 MSI 图像表现更好。在 Cubist 框架内结合 RS 数据集及其衍生的 TCW 可以生成准确的区域盐度图。MSI 数据的时间重访频率和光谱分辨率的提高有望对获取沙漠土壤高质量盐度信息产生积极影响。