School of Geographical Sciences, Xinjiang University, Urumqi 830046, China.
Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.
Sensors (Basel). 2022 Mar 31;22(7):2685. doi: 10.3390/s22072685.
Soil organic carbon (SOC), as the largest carbon pool on the land surface, plays an important role in soil quality, ecological security and the global carbon cycle. Multisource remote sensing data-driven modeling strategies are not well understood for accurately mapping soil organic carbon. Here, we hypothesized that the Sentinel-2 Multispectral Sensor Instrument (MSI) data-driven modeling strategy produced superior outcomes compared to modeling based on Landsat 8 Operational Land Imager (OLI) data due to the finer spatial and spectral resolutions of the Sentinel-2A MSI data. To test this hypothesis, the Ebinur Lake wetland in Xinjiang was selected as the study area. In this study, SOC estimation was carried out using Sentinel-2A and Landsat 8 data, combining climatic variables, topographic factors, index variables and Sentinel-1A data to construct a common variable model for Sentinel-2A data and Landsat 8 data, and a full variable model for Sentinel-2A data, respectively. We utilized ensemble learning algorithms to assess the prediction performance of modeling strategies, including random forest (RF), gradient boosted decision tree (GBDT) and extreme gradient boosting (XGBoost) algorithms. The results show that: (1) The Sentinel-2A model outperformed the Landsat 8 model in the prediction of SOC contents, and the Sentinel-2A full variable model under the XGBoost algorithm achieved the best results R = 0.804, RMSE = 1.771, RPIQ = 2.687). (2) The full variable model of Sentinel-2A with the addition of the red-edge band and red-edge index improved R by 6% and 3.2% over the common variable Landsat 8 and Sentinel-2A models, respectively. (3) In the SOC mapping of the Ebinur Lake wetland, the areas with higher SOC content were mainly concentrated in the oasis, while the mountainous and lakeside areas had lower SOC contents. Our results provide a program to monitor the sustainability of terrestrial ecosystems through a satellite perspective.
土壤有机碳(SOC)作为陆地表面最大的碳库,在土壤质量、生态安全和全球碳循环中发挥着重要作用。利用多源遥感数据驱动的建模策略来准确地绘制土壤有机碳图还没有得到很好的理解。在这里,我们假设与基于陆地卫星 8 操作陆地成像仪(OLI)数据的建模相比,利用 Sentinel-2 多光谱传感器仪器(MSI)数据驱动的建模策略会产生更好的结果,因为 Sentinel-2A MSI 数据具有更精细的空间和光谱分辨率。为了验证这一假设,选择新疆艾比湖湿地作为研究区域。在这项研究中,我们利用 Sentinel-2A 和陆地卫星 8 数据,结合气候变量、地形因素、指数变量和 Sentinel-1A 数据,为 Sentinel-2A 数据和陆地卫星 8 数据分别构建了一个公共变量模型和一个全变量模型,来进行 SOC 估算。我们利用集成学习算法来评估建模策略的预测性能,包括随机森林(RF)、梯度提升决策树(GBDT)和极端梯度提升(XGBoost)算法。结果表明:(1)在 SOC 含量的预测方面,Sentinel-2A 模型优于陆地卫星 8 模型,XGBoost 算法下的 Sentinel-2A 全变量模型取得了最佳结果,R = 0.804,RMSE = 1.771,RPIQ = 2.687。(2)与公共变量的陆地卫星 8 和 Sentinel-2A 模型相比,增加了红边波段和红边指数的 Sentinel-2A 全变量模型的 R 值分别提高了 6%和 3.2%。(3)在艾比湖湿地的 SOC 制图中,高 SOC 含量的区域主要集中在绿洲,而山区和湖滨地区的 SOC 含量较低。我们的研究结果提供了一个通过卫星视角监测陆地生态系统可持续性的方案。