Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong.
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.
J Comput Chem. 2020 Apr 15;41(10):1034-1044. doi: 10.1002/jcc.26151. Epub 2020 Jan 24.
In a typical biomolecular simulation using Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field, the vast majority molecules in the simulation box consist of water, and these water molecules consume the most CPU power due to the explicit mutual induction effect. To improve the computational efficiency, we here develop two new nonpolarizable water models (with flexible bonds and fixed charges) that are compatible with AMOEBA solute: the 3-site AW3C and 5-site AW5C. To derive the force-field parameters for AW3C and AW5C, we fit to six experimental liquid thermodynamic properties: liquid density, enthalpy of vaporization, dielectric constant, isobaric heat capacity, isothermal compressibility and thermal expansion coefficient, at a broad range of temperatures from 261.15 to 353.15 K under 1.0 atm pressure. We further validate our AW3C and AW5C water models by showing that they can well reproduce the radial distribution function g(r), self-diffusion constant D, and hydration free energy from the AMOEBA03 water model and the experimental observations. Furthermore, we show that our AW3C and AW5C water models can greatly accelerate (>5 times) the bulk water as well as biomolecular simulations when compared to AMOEBA water. Specifically, we demonstrate that the applications of AW3C and AW5C water models to simulate a DNA duplex lead to a threefold acceleration, and in the meanwhile well maintain the structural properties as the fully polarizable AMOEBA water. We expect that our AW3C and AW5C water models hold great promise to be widely applied to simulate complex bio-molecules using the AMOEBA force field.
在使用用于生物分子应用的原子多极优化能量(AMOEBA)力场的典型生物分子模拟中,模拟盒中的绝大多数分子由水组成,由于显式互感应效应,这些水分子消耗了大部分 CPU 功率。为了提高计算效率,我们在此开发了两种与 AMOEBA 溶质兼容的新非极化水分子模型(具有柔性键和固定电荷):3 位点 AW3C 和 5 位点 AW5C。为了推导出 AW3C 和 AW5C 的力场参数,我们拟合了六个实验液体热力学性质:液体密度、汽化焓、介电常数、等压热容、等温压缩系数和热膨胀系数,温度范围从 261.15 到 353.15 K,压力为 1.0 atm。我们通过证明它们可以很好地再现 AMOEBA03 水模型和实验观察的径向分布函数 g(r)、自扩散常数 D 和水合自由能,进一步验证了我们的 AW3C 和 AW5C 水模型。此外,我们表明,与 AMOEBA 水相比,我们的 AW3C 和 AW5C 水模型可以大大加速(>5 倍)块状水和生物分子模拟。具体来说,我们证明了 AW3C 和 AW5C 水模型在模拟 DNA 双链体时的应用可使速度提高三倍,同时很好地保持了与完全极化的 AMOEBA 水相同的结构特性。我们期望我们的 AW3C 和 AW5C 水模型具有广泛应用于使用 AMOEBA 力场模拟复杂生物分子的巨大潜力。