Yang Xudong, Liu Chengwen, Walker Brandon D, Ren Pengyu
Department of Biomedical Engineering, The University of Texas at Austin, Austin, 78712 Texas, USA.
J Chem Phys. 2020 Aug 14;153(6):064103. doi: 10.1063/5.0016376.
The molecular dipole moment is strongly coupled to molecular geometry among different phases, conformational states, intermolecular interaction energy, and vibrational spectroscopy. Our previous inclusion of geometry dependent charge flux into the atomic multipole-based polarizable AMOEBA+ force field has shown significant improvement of water properties from gaseous to condensed phases [C. Liu et al., J. Phys. Chem. Lett. 11(2), 419-426 (2020)]. In this work, the parameterization of the CF model for a broad range of organic and biomolecular fragments is presented. Atom types are automatically assigned by matching the predefined SMARTS patterns. Comparing to the current AMOEBA+ model without the CF component, it is shown that the AMOEBA+ (CF) model improves the description of molecular dipole moments for the molecules we studied over both equilibrium and distorted geometries. For the equilibrium-geometry structures, AMOEBA+ (CF) reduces the mean square error (MSE) from 6.806 × 10 (without CF) to 4.249 × 10 D. For non-equilibrium structures, the MSE is reduced from 5.766 × 10 (without CF) to 2.237 × 10 D. Finally, the transferability of the CF model and parameters were validated on two sets of molecules: one includes molecules in the training set but with different geometries, and the other one involves new molecules outside of the training set. A similar improvement on dipole surfaces was obtained on the validation sets. The CF algorithms and parameters derived in this work are general and can be implemented into any existing molecular mechanical force fields.
分子偶极矩与不同相态、构象状态、分子间相互作用能以及振动光谱中的分子几何结构紧密相关。我们之前将几何相关电荷通量纳入基于原子多极的可极化AMOEBA+力场,已显示出从气相到凝聚相水性质的显著改善[C. Liu等人,《物理化学快报》11(2),419 - 426(2020)]。在这项工作中,展示了针对广泛的有机和生物分子片段的CF模型的参数化。通过匹配预定义的SMARTS模式自动分配原子类型。与当前没有CF组件的AMOEBA+模型相比,结果表明AMOEBA+ (CF)模型在平衡几何结构和扭曲几何结构下,都改善了我们所研究分子的分子偶极矩描述。对于平衡几何结构,AMOEBA+ (CF)将均方误差(MSE)从6.806×10(无CF)降低到4.249×10 D。对于非平衡结构,MSE从5.766×10(无CF)降低到2.237×10 D。最后,在两组分子上验证了CF模型和参数的可转移性:一组包括训练集中但具有不同几何结构的分子,另一组涉及训练集之外的新分子。在验证集上获得了偶极表面的类似改进。这项工作中推导的CF算法和参数具有通用性,可应用于任何现有的分子力学力场。