Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
Phys Rev Lett. 2020 Jan 10;124(1):017201. doi: 10.1103/PhysRevLett.124.017201.
We lay the foundation for determining the microscopic spin interactions in two-dimensional (2D) ferromagnets by combining angle-dependent ferromagnetic resonance (FMR) experiments on high quality CrI_{3} single crystals with theoretical modeling based on symmetries. We discover that the Kitaev interaction is the strongest in this material with K∼-5.2 meV, 25 times larger than the Heisenberg exchange J∼-0.2 meV, and responsible for opening the ∼5 meV gap at the Dirac points in the spin-wave dispersion. Furthermore, we find that the symmetric off-diagonal anisotropy Γ∼-67.5 μeV, though small, is crucial for opening a ∼0.3 meV gap in the magnon spectrum at the zone center and stabilizing ferromagnetism in the 2D limit. The high resolution of the FMR data further reveals a μeV-scale quadrupolar contribution to the S=3/2 magnetism. Our identification of the underlying exchange anisotropies opens paths toward 2D ferromagnets with higher T_{C} as well as magnetically frustrated quantum spin liquids based on Kitaev physics.
我们通过将高质量 CrI_{3} 单晶的角度依赖铁磁共振(FMR)实验与基于对称性的理论建模相结合,为确定二维(2D)亚铁磁体中的微观自旋相互作用奠定了基础。我们发现,Kitaev 相互作用在这种材料中最强,K∼-5.2 meV,比海森堡交换 J∼-0.2 meV 大 25 倍,负责打开在自旋波色散中在狄拉克点处的∼5 meV 间隙。此外,我们发现对称的非对角各向异性 Γ∼-67.5 μeV,虽然很小,但对于在区中心打开∼0.3 meV 的磁振子谱间隙和稳定 2D 极限中的铁磁性至关重要。FMR 数据的高分辨率进一步揭示了 S=3/2 磁体中μeV 级别的四极贡献。我们对基础交换各向异性的识别为具有更高 T_{C} 的 2D 亚铁磁体以及基于 Kitaev 物理的磁受挫量子自旋液体开辟了道路。