IEEE Trans Med Imaging. 2020 Jun;39(6):2201-2212. doi: 10.1109/TMI.2020.2967451. Epub 2020 Jan 17.
Heat diffusion has been widely used in brain imaging for surface fairing, mesh regularization and cortical data smoothing. Motivated by diffusion wavelets and convolutional neural networks on graphs, we present a new fast and accurate numerical scheme to solve heat diffusion on surface meshes. This is achieved by approximating the heat kernel convolution using high degree orthogonal polynomials in the spectral domain. We also derive the closed-form expression of the spectral decomposition of the Laplace-Beltrami operator and use it to solve heat diffusion on a manifold for the first time. The proposed fast polynomial approximation scheme avoids solving for the eigenfunctions of the Laplace-Beltrami operator, which is computationally costly for large mesh size, and the numerical instability associated with the finite element method based diffusion solvers. The proposed method is applied in localizing the male and female differences in cortical sulcal and gyral graph patterns obtained from MRI in an innovative way. The MATLAB code is available at http://www.stat.wisc.edu/~mchung/chebyshev.
热扩散在脑成像中的表面光顺、网格正则化和皮质数据平滑中得到了广泛的应用。受扩散小波和图上的卷积神经网络的启发,我们提出了一种新的快速准确的数值方案来解决表面网格上的热扩散问题。这是通过在谱域中使用高次正交多项式来近似热核卷积来实现的。我们还推导出了拉普拉斯-贝尔特拉米算子的谱分解的封闭形式表达式,并首次将其用于流形上的热扩散。所提出的快速多项式逼近方案避免了求解拉普拉斯-贝尔特拉米算子的特征函数,这对于大网格尺寸来说计算成本很高,并且与基于有限元方法的扩散求解器相关的数值不稳定性。该方法应用于以创新的方式定位从 MRI 获得的皮质脑回和脑沟图形的男性和女性差异。MATLAB 代码可在 http://www.stat.wisc.edu/~mchung/chebyshev 获得。