Suppr超能文献

相似文献

1
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis.
IEEE Trans Med Imaging. 2020 Jun;39(6):2201-2212. doi: 10.1109/TMI.2020.2967451. Epub 2020 Jan 17.
2
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
3
Fast mesh data augmentation via Chebyshev polynomial of spectral filtering.
Neural Netw. 2021 Nov;143:198-208. doi: 10.1016/j.neunet.2021.05.025. Epub 2021 Jun 9.
4
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace-Beltrami spectral filtering.
Neural Comput Appl. 2021 Oct;33(20):13693-13704. doi: 10.1007/s00521-021-06006-6. Epub 2021 Sep 18.
6
Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator.
IEEE Trans Med Imaging. 2006 Oct;25(10):1296-306. doi: 10.1109/tmi.2006.882143.
7
TetCNN: Convolutional Neural Networks on Tetrahedral Meshes.
Inf Process Med Imaging. 2023 Jun;13939:303-315. doi: 10.1007/978-3-031-34048-2_24. Epub 2023 Jun 8.
8
A short- time beltrami kernel for smoothing images and manifolds.
IEEE Trans Image Process. 2007 Jun;16(6):1628-36. doi: 10.1109/tip.2007.894253.
9
Spectral Laplace-Beltrami wavelets with applications in medical images.
IEEE Trans Med Imaging. 2015 May;34(5):1005-17. doi: 10.1109/TMI.2014.2363884. Epub 2014 Oct 17.
10
A direct approach for function approximation on data defined manifolds.
Neural Netw. 2020 Dec;132:253-268. doi: 10.1016/j.neunet.2020.08.018. Epub 2020 Aug 25.

引用本文的文献

1
Anatomically compliant modes of variations: New tools for brain connectivity.
PLoS One. 2023 Nov 7;18(11):e0292450. doi: 10.1371/journal.pone.0292450. eCollection 2023.
3
Estimating Outlier-Immunized Common Harmonic Waves for Brain Network Analyses on the Stiefel Manifold.
IEEE J Biomed Health Inform. 2023 May;27(5):2411-2422. doi: 10.1109/JBHI.2023.3250711. Epub 2023 May 4.
4
Characterizing the propagation pathway of neuropathological events of Alzheimer's disease using harmonic wavelet analysis.
Med Image Anal. 2022 Jul;79:102446. doi: 10.1016/j.media.2022.102446. Epub 2022 Apr 6.
5
Revisiting convolutional neural network on graphs with polynomial approximations of Laplace-Beltrami spectral filtering.
Neural Comput Appl. 2021 Oct;33(20):13693-13704. doi: 10.1007/s00521-021-06006-6. Epub 2021 Sep 18.
6
Discussion of 'Event history and topological data analysis'.
Biometrika. 2021 Dec;108(4):775-778. doi: 10.1093/biomet/asab023. Epub 2021 Nov 15.
7
Cortical Surface-Informed Volumetric Spatial Smoothing of fMRI Data via Graph Signal Processing.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3804-3808. doi: 10.1109/EMBC46164.2021.9629662.
8
Convolutional Bayesian Models for Anatomical Landmarking on Multi-Dimensional Shapes.
Med Image Comput Comput Assist Interv. 2020;12264:786-796. doi: 10.1007/978-3-030-59719-1_76. Epub 2020 Sep 29.
10
Fast mesh data augmentation via Chebyshev polynomial of spectral filtering.
Neural Netw. 2021 Nov;143:198-208. doi: 10.1016/j.neunet.2021.05.025. Epub 2021 Jun 9.

本文引用的文献

1
A critical assessment of data quality and venous effects in sub-millimeter fMRI.
Neuroimage. 2019 Apr 1;189:847-869. doi: 10.1016/j.neuroimage.2019.02.006. Epub 2019 Feb 5.
2
A Tetrahedron-based Heat Flux Signature for Cortical Thickness Morphometry Analysis.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:420-428. doi: 10.1007/978-3-030-00931-1_48. Epub 2018 Sep 13.
3
A cortical shape-adaptive approach to local gyrification index.
Med Image Anal. 2018 Aug;48:244-258. doi: 10.1016/j.media.2018.06.009. Epub 2018 Jun 28.
4
TRACE: A Topological Graph Representation for Automatic Sulcal Curve Extraction.
IEEE Trans Med Imaging. 2018 Jul;37(7):1653-1663. doi: 10.1109/TMI.2017.2787589.
5
Sulcal pits and patterns in developing human brains.
Neuroimage. 2019 Jan 15;185:881-890. doi: 10.1016/j.neuroimage.2018.03.057. Epub 2018 Mar 27.
6
Neuroanatomical morphometric characterization of sex differences in youth using statistical learning.
Neuroimage. 2018 May 15;172:217-227. doi: 10.1016/j.neuroimage.2018.01.065. Epub 2018 Feb 3.
7
Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:10-18. doi: 10.1007/978-3-319-46720-7_2. Epub 2016 Oct 2.
8
Conformal invariants for multiply connected surfaces: Application to landmark curve-based brain morphometry analysis.
Med Image Anal. 2017 Jan;35:517-529. doi: 10.1016/j.media.2016.09.001. Epub 2016 Sep 6.
9
Comparison of cortical folding measures for evaluation of developing human brain.
Neuroimage. 2016 Jan 15;125:780-790. doi: 10.1016/j.neuroimage.2015.11.001. Epub 2015 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验