Suppr超能文献

使用拉普拉斯 - 贝尔特拉米特征函数的热核平滑处理。

Heat kernel smoothing using Laplace-Beltrami eigenfunctions.

作者信息

Seo Seongho, Chung Moo K, Vorperian Houri K

机构信息

Department of Brain and Cognitive Sciences Seoul National University, Korea.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.

Abstract

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green's function of an isotropic diffusion equation on a manifold is constructed as a linear combination of the Laplace-Beltraimi operator. The Green's function is then used in constructing heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a series expansion avoiding numerical instability and inaccuracy issues. This proposed framework is illustrated with mandible surfaces, and is compared to a widely used iterative kernel smoothing technique in computational anatomy. The MATLAB source code is freely available at http://brainimaging.waisman.wisc.edu/ chung/lb.

摘要

我们提出了一种使用拉普拉斯 - 贝尔特拉米特征函数的新型表面平滑框架。流形上各向同性扩散方程的格林函数被构造为拉普拉斯 - 贝尔特拉米算子的线性组合。然后,格林函数被用于构建热核平滑。与许多先前的方法不同,扩散以级数展开的形式进行解析表示,避免了数值不稳定性和不准确性问题。该框架在颌骨表面进行了说明,并与计算解剖学中广泛使用的迭代核平滑技术进行了比较。MATLAB源代码可在http://brainimaging.waisman.wisc.edu/ chung/lb免费获取。

相似文献

1
Heat kernel smoothing using Laplace-Beltrami eigenfunctions.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):505-12. doi: 10.1007/978-3-642-15711-0_63.
4
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis.
IEEE Trans Med Imaging. 2020 Jun;39(6):2201-2212. doi: 10.1109/TMI.2020.2967451. Epub 2020 Jan 17.
6
Automatic extraction of mandibular bone geometry for anatomy-based synthetization of radiographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:490-3. doi: 10.1109/IEMBS.2008.4649197.
7
Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance.
Acad Radiol. 2005 Dec;12(12):1502-11. doi: 10.1016/j.acra.2005.08.008.
8
Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator.
IEEE Trans Med Imaging. 2006 Oct;25(10):1296-306. doi: 10.1109/tmi.2006.882143.
9
Recursive Green's function registration.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):546-53.

引用本文的文献

1
Anatomically compliant modes of variations: New tools for brain connectivity.
PLoS One. 2023 Nov 7;18(11):e0292450. doi: 10.1371/journal.pone.0292450. eCollection 2023.
3
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis.
IEEE Trans Med Imaging. 2020 Jun;39(6):2201-2212. doi: 10.1109/TMI.2020.2967451. Epub 2020 Jan 17.
5
Hot Spots Conjecture and Its Application to Modeling Tubular Structures.
Mach Learn Med Imaging. 2011 Sep;7009:225-232. doi: 10.1007/978-3-642-24319-6_28.
6
Temporal Non-Local Means Filtering Reveals Real-Time Whole-Brain Cortical Interactions in Resting fMRI.
PLoS One. 2016 Jul 8;11(7):e0158504. doi: 10.1371/journal.pone.0158504. eCollection 2016.
7
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Proc IEEE Int Conf Comput Vis. 2015 Dec;2015:1841-1849. doi: 10.1109/ICCV.2015.214.
9
Improved Statistical Power with a Sparse Shape Model in Detecting an Aging Effect in the Hippocampus and Amygdala.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90340Y. doi: 10.1117/12.2036497.
10
Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.
Neuroimage. 2015 Jan 1;104:1-20. doi: 10.1016/j.neuroimage.2014.09.062. Epub 2014 Oct 5.

本文引用的文献

1
A parameterization-based numerical method for isotropic and anisotropic diffusion smoothing on non-flat surfaces.
IEEE Trans Image Process. 2009 Jun;18(6):1358-65. doi: 10.1109/TIP.2009.2016163. Epub 2009 May 5.
2
A short- time beltrami kernel for smoothing images and manifolds.
IEEE Trans Image Process. 2007 Jun;16(6):1628-36. doi: 10.1109/tip.2007.894253.
3
Weighted fourier series representation and its application to quantifying the amount of gray matter.
IEEE Trans Med Imaging. 2007 Apr;26(4):566-81. doi: 10.1109/TMI.2007.892519.
4
Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator.
IEEE Trans Med Imaging. 2006 Oct;25(10):1296-306. doi: 10.1109/tmi.2006.882143.
5
Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data.
Neuroimage. 2006 Dec;33(4):1093-103. doi: 10.1016/j.neuroimage.2006.07.036. Epub 2006 Oct 2.
7
Cortical thickness analysis in autism with heat kernel smoothing.
Neuroimage. 2005 May 1;25(4):1256-65. doi: 10.1016/j.neuroimage.2004.12.052.
8
Detection of fMRI activation using cortical surface mapping.
Hum Brain Mapp. 2001 Feb;12(2):79-93. doi: 10.1002/1097-0193(200102)12:2<79::aid-hbm1005>3.0.co;2-i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验