Suppr超能文献

一种用于皮质厚度形态计量分析的基于四面体的热通量特征

A Tetrahedron-based Heat Flux Signature for Cortical Thickness Morphometry Analysis.

作者信息

Fan Yonghui, Wang Gang, Lepore Natasha, Wang Yalin

机构信息

School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA.

School of Information and Electrical Engineering, Ludong Univ., Yantai, China.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:420-428. doi: 10.1007/978-3-030-00931-1_48. Epub 2018 Sep 13.

Abstract

Cortical thickness analysis of brain magnetic resonance images is an important technique in neuroimaging research. There are two main computational paradigms, namely voxel-based and surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach involving proper discretization methods was proposed. The multi-scale and physics-based geometric features generated through such methods may yield stronger statistical power. However, several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In this paper, we present a universal cortical thickness morphometry analysis approach called (tHFS) to address these challenges. We define the tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS metric space with which cortical morphometric distances can be directly visualized. Additionally, we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra in the grey matters without sacrificing data integrity. Compared with existing cortical thickness analysis approaches, our experimental results of distinguishing among Alzheimer's disease (AD), cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a more accurate representation of cortical thickness morphometry. The tHFS metric experiment provides a more vivid visualization of tHFS's power in separating different clinical groups.

摘要

脑磁共振图像的皮质厚度分析是神经影像学研究中的一项重要技术。有两种主要的计算范式,即基于体素的方法和基于表面的方法。最近,提出了一种基于四面体的体积形态测量(TBVM)方法,该方法涉及适当的离散化方法。通过这些方法生成的多尺度和基于物理的几何特征可能会产生更强的统计能力。然而,一些挑战,如缺乏明确的厚度统计以及将四面体填充到薄而弯曲的皮质结构中的困难,阻碍了TBVM的广泛应用。在本文中,我们提出了一种通用的皮质厚度形态测量分析方法,称为(tHFS)来应对这些挑战。我们定义了基于四面体的弱形式热方程和拉普拉斯 - 贝尔特拉米特征分解,并给出了基于有限元法的显式离散化公式来计算tHFS。我们进一步展示了一个tHFS度量空间,通过它可以直接可视化皮质形态测量距离。此外,我们优化了皮质四面体网格生成流程,并在不牺牲数据完整性的情况下在灰质中填充密集的高质量四面体。与现有的皮质厚度分析方法相比,我们区分阿尔茨海默病(AD)、认知正常(CN)和轻度认知障碍(MCI)受试者的实验结果表明,tHFS能更准确地表示皮质厚度形态测量。tHFS度量实验更生动地展示了tHFS在区分不同临床组方面的能力。

相似文献

1
A Tetrahedron-based Heat Flux Signature for Cortical Thickness Morphometry Analysis.一种用于皮质厚度形态计量分析的基于四面体的热通量特征
Med Image Comput Comput Assist Interv. 2018 Sep;11072:420-428. doi: 10.1007/978-3-030-00931-1_48. Epub 2018 Sep 13.
3
Cortical thickness computation by solving tetrahedron-based harmonic field.通过求解基于四面体的调和场来计算皮质厚度。
Comput Biol Med. 2020 May;120:103727. doi: 10.1016/j.compbiomed.2020.103727. Epub 2020 Mar 25.
4
Multi-scale Heat Kernel based Volumetric Morphology Signature.基于多尺度热核的体积形态特征
Med Image Comput Comput Assist Interv. 2015;9351:751-9. doi: 10.1007/978-3-319-24574-4_90.

引用本文的文献

1
TetCNN: Convolutional Neural Networks on Tetrahedral Meshes.四面体网格上的卷积神经网络(TetCNN)
Inf Process Med Imaging. 2023 Jun;13939:303-315. doi: 10.1007/978-3-031-34048-2_24. Epub 2023 Jun 8.
2
Convolutional Bayesian Models for Anatomical Landmarking on Multi-Dimensional Shapes.用于多维形状解剖地标定位的卷积贝叶斯模型
Med Image Comput Comput Assist Interv. 2020;12264:786-796. doi: 10.1007/978-3-030-59719-1_76. Epub 2020 Sep 29.
6
Predicting future cognitive decline with hyperbolic stochastic coding.用双曲线随机编码预测未来认知能力下降。
Med Image Anal. 2021 May;70:102009. doi: 10.1016/j.media.2021.102009. Epub 2021 Feb 24.

本文引用的文献

5
Registration based cortical thickness measurement.基于配准的皮层厚度测量。
Neuroimage. 2009 Apr 15;45(3):867-79. doi: 10.1016/j.neuroimage.2008.12.016. Epub 2008 Dec 25.
6
The Alzheimer's disease neuroimaging initiative.阿尔茨海默病神经影像学计划。
Neuroimaging Clin N Am. 2005 Nov;15(4):869-77, xi-xii. doi: 10.1016/j.nic.2005.09.008.
10
Three-dimensional mapping of cortical thickness using Laplace's equation.使用拉普拉斯方程进行皮质厚度的三维映射。
Hum Brain Mapp. 2000 Sep;11(1):12-32. doi: 10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验