Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan.
Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
Cardiovasc Res. 2020 Nov 1;116(13):2116-2130. doi: 10.1093/cvr/cvaa010.
The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them.
We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analysed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as 'pathogenic' by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that two variants in KCNH2 and SCN5A, four variants in SCN10A, and one variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from 'Uncertain significance' to 'Likely pathogenic' in six probands.
Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD.
心脏传导系统疾病(CCSD)的遗传病因尚未完全阐明。全外显子组测序(WES)可检测多种遗传变异;然而,鉴定致病性变异仍然具有挑战性。我们旨在通过使用 WES 和 2015 年美国医学遗传学与基因组学学院(ACMG)标准和指南,以及评估功能研究对确定这些变异的有用性,来鉴定 CCSD 患者的致病性或可能致病性变异。
我们对 23 名诊断为早发性(<65 岁)CCSD 的先证者进行了 WES,并分析了 117 个与心律失常性疾病或心肌病相关的基因。我们重点关注罕见变异(次要等位基因频率<0.1%),这些变异在人群数据库中不存在。5 名先证者的 EMD 和 LMNA 中存在蛋白截断变异,根据 2015 年 ACMG 标准和指南,这些变异被归类为“致病性”。为了评估这些变异带来的功能变化,我们使用 CRISPR 介导的插入或缺失斑马鱼 EMD 或 LMNA 同源物,生成了一个 knock-out 斑马鱼。CRISPR/Cas9 注射胚胎和纯合缺失的 F2 代胚胎的平均心率和传导速度明显降低。在 11 名先证者中发现了 21 个意义不确定的变异。细胞电生理研究和体内斑马鱼心脏试验表明,KCNH2 和 SCN5A 中的两个变异、SCN10A 中的四个变异以及 MYH6 中的一个变异,都使这六个先证者的这些基因的临床意义从“意义不确定”变为“可能致病”。
在 23 名 CCSD 先证者中,我们成功鉴定了 11 名先证者(48%)的致病性或可能致病性变异。细胞电生理研究和体内斑马鱼心脏试验的功能分析可能有助于确定 CCSD 患者罕见变异的致病性。SCN10A 可能是导致 CCSD 的主要基因之一。