Wei Guohui, Qiu Min, Zhang Kuixing, Li Ming, Wei Dejian, Li Yanjun, Liu Peiyu, Cao Hui, Xing Mengmeng, Yang Feng
School of Science and Engineering, Shandong University of Traditional Chinese Medicine.
Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology, Jinan, China.
Medicine (Baltimore). 2020 Jan;99(4):e18724. doi: 10.1097/MD.0000000000018724.
Deep analysis of radiographic images can quantify the extent of intra-tumoral heterogeneity for personalized medicine.In this paper, we propose a novel content-based multi-feature image retrieval (CBMFIR) scheme to discriminate pulmonary nodules benign or malignant. Two types of features are applied to represent the pulmonary nodules. With each type of features, a single-feature distance metric model is proposed to measure the similarity of pulmonary nodules. And then, multiple single-feature distance metric models learned from different types of features are combined to a multi-feature distance metric model. Finally, the learned multi-feature distance metric is used to construct a content-based image retrieval (CBIR) scheme to assist the doctors in diagnosis of pulmonary nodules. The classification accuracy and retrieval accuracy are used to evaluate the performance of the scheme.The classification accuracy is 0.955 ± 0.010, and the retrieval accuracies outperform the comparison methods.The proposed CBMFIR scheme is effective in diagnosis of pulmonary nodules. Our method can better integrate multiple types of features from pulmonary nodules.
对射线图像进行深度分析可为个性化医疗量化肿瘤内异质性的程度。在本文中,我们提出了一种新颖的基于内容的多特征图像检索(CBMFIR)方案,以鉴别肺结节的良恶性。应用两种类型的特征来表示肺结节。针对每种类型的特征,提出了一个单特征距离度量模型来测量肺结节的相似度。然后,将从不同类型特征中学到的多个单特征距离度量模型组合成一个多特征距离度量模型。最后,使用学到的多特征距离度量来构建一个基于内容的图像检索(CBIR)方案,以协助医生诊断肺结节。使用分类准确率和检索准确率来评估该方案的性能。分类准确率为0.955±0.010,检索准确率优于比较方法。所提出的CBMFIR方案在肺结节诊断中是有效的。我们的方法能够更好地整合来自肺结节的多种类型特征。