Suppr超能文献

基于最优特征集和基于类成员关系检索的肺结节图像内容检索系统

Content-Based Image Retrieval System for Pulmonary Nodules Using Optimal Feature Sets and Class Membership-Based Retrieval.

作者信息

Mehre Shrikant A, Dhara Ashis Kumar, Garg Mandeep, Kalra Naveen, Khandelwal Niranjan, Mukhopadhyay Sudipta

机构信息

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.

Centre for Image Analysis, Uppsala University, Uppsala, Sweden.

出版信息

J Digit Imaging. 2019 Jun;32(3):362-385. doi: 10.1007/s10278-018-0136-1.

Abstract

Lung cancer manifests itself in the form of lung nodules, the diagnosis of which is essential to plan the treatment. Automated retrieval of nodule cases will assist the budding radiologists in self-learning and differential diagnosis. This paper presents a content-based image retrieval (CBIR) system for lung nodules using optimal feature sets and learning to enhance the performance of retrieval. The classifiers with more features suffer from the curse of dimensionality. Like classification schemes, we found that the optimal feature set selected using the minimal-redundancy-maximal-relevance (mRMR) feature selection technique improves the precision performance of simple distance-based retrieval (SDR). The performance of the classifier is always superior to SDR, which leans researchers towards conventional classifier-based retrieval (CCBR). While CCBR improves the average precision and provides 100% precision for correct classification, it fails for misclassification leading to zero retrieval precision. The class membership-based retrieval (CMR) is found to bridge this gap for texture-based retrieval. Here, CMR is proposed for nodule retrieval using shape-, margin-, and texture-based features. It is found again that optimal feature set is important for the classifier used in CMR as well as for the feature set used for retrieval, which may lead to different feature sets. The proposed system is evaluated using two independent databases from two continents: a public database LIDC/IDRI and a private database PGIMER-IITKGP, using three distance metrics, i.e., Canberra, City block, and Euclidean. The proposed CMR-based retrieval system with optimal feature sets performs better than CCBR and SDR with optimal features in terms of average precision. Apart from average precision and standard deviation of precision, the fraction of queries with zero precision retrieval is also measured.

摘要

肺癌以肺结节的形式表现出来,对其进行诊断对于制定治疗方案至关重要。自动检索结节病例将有助于初出茅庐的放射科医生进行自我学习和鉴别诊断。本文提出了一种基于内容的肺结节图像检索(CBIR)系统,该系统使用最优特征集并进行学习以提高检索性能。具有更多特征的分类器会受到维数灾难的影响。与分类方案一样,我们发现使用最小冗余最大相关度(mRMR)特征选择技术选择的最优特征集提高了基于简单距离的检索(SDR)的精确性能。分类器的性能总是优于SDR,这使研究人员倾向于基于传统分类器的检索(CCBR)。虽然CCBR提高了平均精度并为正确分类提供了100%的精度,但对于错误分类它却失效了,导致检索精度为零。基于类成员的检索(CMR)被发现可以弥补基于纹理检索的这一差距。在此,提出了使用基于形状、边缘和纹理的特征进行结节检索的CMR。再次发现,最优特征集对于CMR中使用的分类器以及用于检索的特征集都很重要,这可能会导致不同的特征集。所提出的系统使用来自两大洲的两个独立数据库进行评估:一个公共数据库LIDC/IDRI和一个私有数据库PGIMER-IITKGP,使用三种距离度量,即堪培拉距离、曼哈顿距离和欧几里得距离。所提出的基于CMR的具有最优特征集的检索系统在平均精度方面比具有最优特征的CCBR和SDR表现更好。除了平均精度和精度的标准偏差外,还测量了零精度检索查询的比例。

相似文献

3
Automatic weighing attribute to retrieve similar lung cancer nodules.
BMC Med Inform Decis Mak. 2016 Jul 21;16 Suppl 2(Suppl 2):79. doi: 10.1186/s12911-016-0313-4.
5
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
J Med Syst. 2018 Jan 25;42(3):44. doi: 10.1007/s10916-017-0880-7.
6
A multi-feature image retrieval scheme for pulmonary nodule diagnosis.
Medicine (Baltimore). 2020 Jan;99(4):e18724. doi: 10.1097/MD.0000000000018724.
7
Similarity-based online feature selection in content-based image retrieval.
IEEE Trans Image Process. 2006 Mar;15(3):702-12. doi: 10.1109/tip.2005.863105.
8
A novel computer-aided lung nodule detection system for CT images.
Med Phys. 2011 Oct;38(10):5630-45. doi: 10.1118/1.3633941.
9
Multitraining support vector machine for image retrieval.
IEEE Trans Image Process. 2006 Nov;15(11):3597-601. doi: 10.1109/tip.2006.881938.
10
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):509-517. doi: 10.1007/s11548-016-1471-7. Epub 2016 Aug 23.

引用本文的文献

1
A multi-level similarity measure for the retrieval of the common CT imaging signs of lung diseases.
Med Biol Eng Comput. 2020 May;58(5):1015-1029. doi: 10.1007/s11517-020-02146-4. Epub 2020 Mar 2.

本文引用的文献

1
Trends in bidi and cigarette smoking in India from 1998 to 2015, by age, gender and education.
BMJ Glob Health. 2016 Apr 6;1(1):e000005. doi: 10.1136/bmjgh-2015-000005. eCollection 2016.
3
Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images.
Int J Comput Assist Radiol Surg. 2016 Mar;11(3):337-49. doi: 10.1007/s11548-015-1284-0. Epub 2015 Sep 4.
4
Erratum to: A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
J Digit Imaging. 2016 Feb;29(1):148. doi: 10.1007/s10278-015-9812-6.
5
Texture feature analysis for computer-aided diagnosis on pulmonary nodules.
J Digit Imaging. 2015 Feb;28(1):99-115. doi: 10.1007/s10278-014-9718-8.
6
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.
J Digit Imaging. 2013 Dec;26(6):1045-57. doi: 10.1007/s10278-013-9622-7.
8
BRISC-an open source pulmonary nodule image retrieval framework.
J Digit Imaging. 2007 Nov;20 Suppl 1(Suppl 1):63-71. doi: 10.1007/s10278-007-9059-y. Epub 2007 Aug 14.
10
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38. doi: 10.1109/TPAMI.2005.159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验