Mehre Shrikant A, Dhara Ashis Kumar, Garg Mandeep, Kalra Naveen, Khandelwal Niranjan, Mukhopadhyay Sudipta
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
Centre for Image Analysis, Uppsala University, Uppsala, Sweden.
J Digit Imaging. 2019 Jun;32(3):362-385. doi: 10.1007/s10278-018-0136-1.
Lung cancer manifests itself in the form of lung nodules, the diagnosis of which is essential to plan the treatment. Automated retrieval of nodule cases will assist the budding radiologists in self-learning and differential diagnosis. This paper presents a content-based image retrieval (CBIR) system for lung nodules using optimal feature sets and learning to enhance the performance of retrieval. The classifiers with more features suffer from the curse of dimensionality. Like classification schemes, we found that the optimal feature set selected using the minimal-redundancy-maximal-relevance (mRMR) feature selection technique improves the precision performance of simple distance-based retrieval (SDR). The performance of the classifier is always superior to SDR, which leans researchers towards conventional classifier-based retrieval (CCBR). While CCBR improves the average precision and provides 100% precision for correct classification, it fails for misclassification leading to zero retrieval precision. The class membership-based retrieval (CMR) is found to bridge this gap for texture-based retrieval. Here, CMR is proposed for nodule retrieval using shape-, margin-, and texture-based features. It is found again that optimal feature set is important for the classifier used in CMR as well as for the feature set used for retrieval, which may lead to different feature sets. The proposed system is evaluated using two independent databases from two continents: a public database LIDC/IDRI and a private database PGIMER-IITKGP, using three distance metrics, i.e., Canberra, City block, and Euclidean. The proposed CMR-based retrieval system with optimal feature sets performs better than CCBR and SDR with optimal features in terms of average precision. Apart from average precision and standard deviation of precision, the fraction of queries with zero precision retrieval is also measured.
肺癌以肺结节的形式表现出来,对其进行诊断对于制定治疗方案至关重要。自动检索结节病例将有助于初出茅庐的放射科医生进行自我学习和鉴别诊断。本文提出了一种基于内容的肺结节图像检索(CBIR)系统,该系统使用最优特征集并进行学习以提高检索性能。具有更多特征的分类器会受到维数灾难的影响。与分类方案一样,我们发现使用最小冗余最大相关度(mRMR)特征选择技术选择的最优特征集提高了基于简单距离的检索(SDR)的精确性能。分类器的性能总是优于SDR,这使研究人员倾向于基于传统分类器的检索(CCBR)。虽然CCBR提高了平均精度并为正确分类提供了100%的精度,但对于错误分类它却失效了,导致检索精度为零。基于类成员的检索(CMR)被发现可以弥补基于纹理检索的这一差距。在此,提出了使用基于形状、边缘和纹理的特征进行结节检索的CMR。再次发现,最优特征集对于CMR中使用的分类器以及用于检索的特征集都很重要,这可能会导致不同的特征集。所提出的系统使用来自两大洲的两个独立数据库进行评估:一个公共数据库LIDC/IDRI和一个私有数据库PGIMER-IITKGP,使用三种距离度量,即堪培拉距离、曼哈顿距离和欧几里得距离。所提出的基于CMR的具有最优特征集的检索系统在平均精度方面比具有最优特征的CCBR和SDR表现更好。除了平均精度和精度的标准偏差外,还测量了零精度检索查询的比例。