Suppr超能文献

重新审视失眠症多导睡眠图数据的价值:所见并非全部。

Revisiting the value of polysomnographic data in insomnia: more than meets the eye.

机构信息

Université de Paris, Equipe d'accueil VIgilance FAtigue SOMmeil (VIFASOM) EA 7330, Paris, France; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia.

Université de Paris, Equipe d'accueil VIgilance FAtigue SOMmeil (VIFASOM) EA 7330, Paris, France; Assistance Publique-Hôpitaux de Paris (APHP) Hôtel Dieu, Centre du Sommeil et de la Vigilance, Paris, France.

出版信息

Sleep Med. 2020 Feb;66:184-200. doi: 10.1016/j.sleep.2019.12.002. Epub 2019 Dec 13.

Abstract

BACKGROUND

Polysomnography (PSG) is not recommended as a diagnostic tool in insomnia. However, this consensual approach might be tempered in the light of two ongoing transformations in sleep research: big data and artificial intelligence (AI).

METHOD

We analyzed the PSG of 347 patients with chronic insomnia, including 59 with Sleep State Misperception (SSM) and 288 without (INS). 89 good sleepers (GS) were used as controls. PSGs were compared regarding: (1) macroscopic indexes derived from the hypnogram, (2) mesoscopic indexes extracted from the electroencephalographic (EEG) spectrum, (3) sleep microstructure (slow waves, spindles). We used supervised algorithms to differentiate patients from GS.

RESULTS

Macroscopic features illustrate the insomnia conundrum, with SSM patients displaying similar sleep metrics as GS, whereas INS patients show a deteriorated sleep. However, both SSM and INS patients showed marked differences in EEG spectral components (meso) compared to GS, with reduced power in the delta band and increased power in the theta/alpha, sigma and beta bands. INS and SSM patients showed decreased spectral slope in NREM. INS and SSM patients also differed from GS in sleep microstructure with fewer and slower slow waves and more and faster sleep spindles. Importantly, SSM and INS patients were almost indistinguishable at the meso and micro levels. Accordingly, unsupervised classifiers can reliably categorize insomnia patients and GS (Cohen's κ = 0.87) but fail to tease apart SSM and INS patients when restricting classifiers to micro and meso features (κ=0.004).

CONCLUSION

AI analyses of PSG recordings can help moving insomnia diagnosis beyond subjective complaints and shed light on the physiological substrate of insomnia.

摘要

背景

多导睡眠图(PSG)不作为失眠的诊断工具。然而,这种共识方法可能会根据睡眠研究中的两个正在进行的转变而改变:大数据和人工智能(AI)。

方法

我们分析了 347 例慢性失眠患者的 PSG,其中包括 59 例睡眠状态感知错误(SSM)和 288 例无睡眠状态感知错误(INS)。89 名睡眠良好者(GS)作为对照。PSG 比较结果如下:(1)从催眠图中得出的宏观指标,(2)从脑电图(EEG)谱中提取的中观指标,(3)睡眠微观结构(慢波、纺锤波)。我们使用有监督算法来区分患者与 GS。

结果

宏观特征说明了失眠的难题,SSM 患者的睡眠指标与 GS 相似,而 INS 患者的睡眠则恶化。然而,与 GS 相比,SSM 和 INS 患者的 EEG 频谱成分(中观)都有明显差异,表现为 delta 波段功率降低,theta/alpha、sigma 和 beta 波段功率增加。INS 和 SSM 患者在 NREM 中表现出光谱斜率降低。INS 和 SSM 患者的睡眠微观结构也与 GS 不同,慢波数量减少,速度较慢,睡眠纺锤波数量增加,速度较快。重要的是,SSM 和 INS 患者在中观和微观水平上几乎无法区分。因此,无监督分类器可以可靠地对失眠患者和 GS 进行分类(Cohen's κ=0.87),但当将分类器限制在微观和中观特征时,无法区分 SSM 和 INS 患者(κ=0.004)。

结论

PSG 记录的 AI 分析可以帮助失眠诊断超越主观抱怨,并揭示失眠的生理基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验