Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Kolkata, India.
Biotechnol Bioeng. 2020 May;117(5):1502-1512. doi: 10.1002/bit.27286. Epub 2020 Feb 7.
Synthetic genetic devices can perform molecular computation in living bacteria, which may sense more than one environmental chemical signal, perform complex signal processing in a human-designed way, and respond in a logical manner. IMPLY is one of the four fundamental logic functions and unlike others, it is an "IF-THEN" constraint-based logic. By adopting physical hierarchy of electronics in the realm of in-cell systems chemistry, a full-spectrum transcriptional cascaded synthetic genetic IMPLY gate, which senses and integrates two environmental chemical signals, is designed, fabricated, and optimized in a single Escherichia coli cell. This IMPLY gate is successfully integrated into a 2-input-2-output integrated logic circuit and showed higher signal-decoding efficiency. Further, we showed simple application of those devices by integrating them with an inherent cellular process, where we controlled the cell morphology and color in a logical manner. To fabricate and optimize the genetic devices, a new process pipeline named NETWORK Brick is developed. This pipeline allows fast parallel kinetic optimization and reduction in the unwanted kinetic influence of one DNA module over another. A mathematical model is developed and it shows that response of the genetic devices are digital-like and are mathematically predictable. This single-cell IMPLY gate provides the fundamental constraint-based logic and completes the in-cell molecular logic processing toolbox. The work has significance in the smart biosensor, artificial in-cell molecular computation, synthetic biology, and microbiorobotics.
合成遗传装置可以在活细菌中进行分子计算,这些细菌可以感知一种以上的环境化学信号,以人类设计的方式进行复杂的信号处理,并以逻辑方式做出响应。蕴涵逻辑是四种基本逻辑功能之一,与其他逻辑功能不同,它是一种“如果-那么”的基于约束的逻辑。通过在细胞内系统化学领域采用电子学的物理层次结构,设计、制造和优化了一个全谱转录级联合成遗传蕴涵门,该蕴涵门可以感知和整合两种环境化学信号。这个蕴涵门成功地集成到一个 2 输入 2 输出的集成逻辑电路中,并显示出更高的信号解码效率。此外,我们通过将这些设备与细胞内固有的过程集成在一起,以逻辑方式控制细胞形态和颜色,展示了这些设备的简单应用。为了制造和优化遗传设备,开发了一种名为 NETWORK Brick 的新工艺流水线。该流水线允许快速并行的动力学优化,并减少一个 DNA 模块对另一个模块的不必要动力学影响。还开发了一个数学模型,结果表明遗传设备的响应具有数字特性,并且在数学上是可预测的。这种单细胞蕴涵门提供了基本的基于约束的逻辑,并完成了细胞内分子逻辑处理工具包。这项工作在智能生物传感器、人工细胞内分子计算、合成生物学和微生物机器人学方面具有重要意义。