Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nat Commun. 2016 Jun 3;7:11658. doi: 10.1038/ncomms11658.
Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells.
活细胞对其遇到的连续环境信号执行复杂的计算。这些计算涉及对信号的模拟和数字处理,以产生复杂的发育程序、上下文相关的行为和动态平衡活动。与自然生物系统相比,合成生物系统主要分别侧重于数字或模拟计算。在这里,我们整合模拟和数字计算,在活细胞中实现复杂的混合合成遗传程序。我们提出了一个构建基于不同阈值将模拟输入数字化的比较器基因电路的框架。然后,我们证明比较器可以可预测地组合在一起,以构建带通滤波器、三进制逻辑系统和多级模拟-数字转换器。此外,我们将这些模拟-数字电路与其他数字基因电路接口,以实现浓度相关的逻辑。我们期望这种混合计算范例将为工程细胞带来新的工业、诊断和治疗应用。