Suppr超能文献

一种空间基因组方法确定了阿巴拉契亚景观中快速破碎化过程中基因流动的时间滞后和历史障碍。

A spatial genomic approach identifies time lags and historical barriers to gene flow in a rapidly fragmenting Appalachian landscape.

机构信息

Department of Biology, University of Kentucky, Lexington, KY, USA.

Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA.

出版信息

Mol Ecol. 2020 Feb;29(4):673-685. doi: 10.1111/mec.15362. Epub 2020 Feb 11.

Abstract

The resolution offered by genomic data sets coupled with recently developed spatially informed analyses are allowing researchers to quantify population structure at increasingly fine temporal and spatial scales. However, both empirical research and conservation measures have been limited by questions regarding the impacts of data set size, data quality thresholds and the timescale at which barriers to gene flow become detectable. Here, we used restriction site associated DNA sequencing to generate a 2,140 single nucleotide polymorphism (SNP) data set for the copperhead snake (Agkistrodon contortrix) and address the population genomic impacts of recent and widespread landscape modification across an ~1,000-km region of eastern Kentucky, USA. Nonspatial population-based assignment and clustering methods supported little to no population structure. However, using individual-based spatial autocorrelation approaches we found evidence for genetic structuring which closely follows the path of a historically important highway which experienced high traffic volumes from c. 1920 to 1970 before losing most traffic to a newly constructed alternative route. We found no similar spatial genomic signatures associated with more recently constructed highways or surface mining activity, although a time lag effect may be responsible for the lack of any emergent spatial genetic patterns. Subsampling of our SNP data set suggested that similar results could be obtained with as few as 250 SNPs, and a range of thresholds for missing data exhibited limited impacts on the spatial patterns we detected. While we were not able to estimate relative effects of land uses or precise time lags, our findings highlight the importance of temporal factors in landscape genetics approaches, and suggest the potential advantages of genomic data sets and fine-scale, spatially informed approaches for quantifying subtle genetic patterns in temporally complex landscapes.

摘要

基因组数据集提供的分辨率加上最近开发的空间信息分析方法,使研究人员能够在越来越精细的时间和空间尺度上量化种群结构。然而,实证研究和保护措施都受到了一些问题的限制,这些问题涉及到数据集大小、数据质量阈值以及基因流动障碍可检测到的时间尺度。在这里,我们使用限制性位点相关 DNA 测序生成了铜斑蛇(Agkistrodon contortrix)的 2140 个单核苷酸多态性(SNP)数据集,并解决了美国肯塔基州东部约 1000 公里范围内最近广泛的景观改造对种群基因组的影响。非空间基于种群的分配和聚类方法支持几乎没有种群结构。然而,使用基于个体的空间自相关方法,我们发现了遗传结构的证据,这些证据与一条历史上重要的高速公路的路径密切相关,这条高速公路在 1920 年至 1970 年期间交通流量很大,之后大部分交通都转移到了一条新修建的替代路线上。我们没有发现与最近修建的高速公路或地表采矿活动相关的类似空间基因组特征,尽管时间滞后效应可能是导致没有出现任何新的空间遗传模式的原因。我们 SNP 数据集的抽样表明,使用多达 250 个 SNP 就可以获得类似的结果,并且对于缺失数据的一系列阈值,对我们检测到的空间模式的影响有限。虽然我们无法估计土地利用或确切时间滞后的相对影响,但我们的研究结果强调了时间因素在景观遗传学方法中的重要性,并表明基因组数据集和精细尺度、空间信息方法在量化时间复杂景观中微妙遗传模式方面具有潜在优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验