Michigan State University Veterinary Diagnostic Laboratory, Toxicology Section, Michigan State University, Lansing, MI, 48910, USA.
Michigan State University College of Veterinary Medicine, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, 48910, USA.
Rapid Commun Mass Spectrom. 2020 May 30;34(10):e8738. doi: 10.1002/rcm.8738.
Determination of phosphine exposure from zinc or aluminum phosphide fumigants continues to be a routine analytical requirement in veterinary forensic toxicology. There is a need for a more reliable and specific method than simple gas chromatography/mass spectrometry (GC/MS) analysis of sample solvent extracts, as GC/MS of extracts on capillary columns used for general screens involves significant interference from air peaks.
GC/MS/MS headspace analysis of acid-generated phosphine gas enabled study of the feasibility of devising multiple reaction monitoring (MRM) approaches to the determination of phosphine with greater specificity.
Collision-induced dissociation in GC/MS/MS showed that phosphine generated m/z 34 → 31, 32 and 33 ion transitions by sequential proton release as well as minor transitions m/z 34 → 47, 34 → 63 and 63 → 31.5 by intermolecular collisions and double charging. Study of the formation of these product ions enabled development of MRM settings for a highly useful headspace method for phosphine detection.
The method was validated over a working range of 5-100 ppm of phosphide generating phosphine gas which enabled retention of regular screen capillary columns without necessitating separation from air components. The method should have adequate sensitivity and reliability for veterinary toxicology laboratories confronting specimens from animals poisoned by crop fumigants.
从锌或铝磷化氢熏蒸剂中确定磷化氢暴露情况仍然是兽医法医毒理学中常规分析要求。需要一种比简单的样品溶剂提取物的气相色谱/质谱(GC/MS)分析更可靠和更具特异性的方法,因为用于一般筛选的毛细管柱 GC/MS 分析会受到来自空气峰的显著干扰。
酸产生的磷化氢气体的 GC/MS/MS 顶空分析使我们能够研究设计具有更高特异性的多反应监测(MRM)方法来测定磷化氢的可行性。
GC/MS/MS 中的碰撞诱导解离表明,磷化氢通过顺序质子释放产生 m/z 34 → 31、32 和 33 离子跃迁,以及通过分子间碰撞和双重充电产生 m/z 34 → 47、34 → 63 和 63 → 31.5 的次要跃迁。对这些产物离子的形成进行研究,使我们能够为磷化氢检测开发一种非常有用的顶空方法的 MRM 设置。
该方法在产生磷化氢的磷化氢气体 5-100ppm 的工作范围内得到验证,无需与空气成分分离即可保留常规筛选毛细管柱。该方法对于面临因作物熏蒸剂中毒的动物标本的兽医毒理学实验室来说,应该具有足够的灵敏度和可靠性。