Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
J Mol Cell Cardiol. 2020 Feb;139:135-147. doi: 10.1016/j.yjmcc.2020.01.007. Epub 2020 Jan 22.
Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function.
To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties.
Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity.
Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
心肌肌钙蛋白 I(cTnI)是心脏舒张的重要生理和病理调节剂。在这种调节中,通过磷酸化进行的 cTnI 的翻译后修饰是加速肌球蛋白丝松弛的关键机制。与磷酸化类似,通过乙酰化进行的翻译后修饰会改变氨基酸电荷和蛋白质功能。最近的研究表明,心肌纤维蛋白的乙酰化加速了松弛,并且 cTnI 在心脏中被乙酰化。这些发现强调了肌球蛋白丝乙酰化的潜在意义;然而,尚不清楚 cTnI 的特定位点的乙酰化是否会导致肌球蛋白丝、肌原纤维和/或细胞力学的变化。本研究的目的是确定模拟 cTnI (赖氨酸-132;K132)的一个位点的乙酰化对肌球蛋白丝、肌原纤维和细胞力学的影响,并阐明其对分子功能的影响。
为了确定 cTnI 在 132 位的拟乙酰化是否调节肌球蛋白丝对肌球蛋白丝肌动蛋白相互作用的调节,我们重新构建了含有 WT 或 K132Q(模拟乙酰化)cTnI 的薄丝,并评估了体外运动。为了测试 K132 处的模拟乙酰化是否改变细胞松弛,用表达 cTnI K132Q 或 K132 被精氨酸取代(以防止乙酰化)的腺病毒构建体感染成年大鼠心室肌细胞,并测量细胞缩短和分离的肌原纤维力学。最后,为了确认细胞缩短和肌原纤维力学的变化直接归因于 cTnI 在 K132 处的拟乙酰化,我们将含有 WT 或 K132Q cTnI 的肌钙蛋白交换到分离的肌原纤维中,并测量肌原纤维的机械性能。
与含有 WT cTnI 的薄丝相比,含有 K132Q cTnI 的薄丝显示出钙敏感性降低。与表达 WT 或 K132R cTnI 的心肌细胞相比,表达 K132Q cTnI 的心肌细胞具有更快的再延长和更快的肌原纤维松弛,并且钙敏感性降低。在体外交换 K132Q cTnI 的肌原纤维表现出更快的松弛和钙敏感性降低。
我们的结果首次表明,模拟特定 cTnI 赖氨酸的乙酰化可加速肌球蛋白丝、肌原纤维和心肌细胞的松弛。这项工作强调了了解特定肌节蛋白的乙酰化如何影响心脏稳态和疾病的重要性,并表明肌球蛋白丝赖氨酸乙酰化的调节可能是改变心脏松弛的新治疗靶点。