Suppr超能文献

肌钙蛋白 I 对心脏功能的调节:生存开关的可塑性。

Troponin I modulation of cardiac performance: Plasticity in the survival switch.

机构信息

Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.

Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Arch Biochem Biophys. 2019 Mar 30;664:9-14. doi: 10.1016/j.abb.2019.01.025. Epub 2019 Jan 23.

Abstract

Signaling complexes targeting the myofilament are essential in modulating cardiac performance. A central target of this signaling is cardiac troponin I (cTnI) phosphorylation. This review focuses on cTnI phosphorylation as a model for myofilament signaling, discussing key gaps and future directions towards understanding complex myofilament modulation of cardiac performance. Human heart cTnI is phosphorylated at 14 sites, giving rise to a complex modulatory network of varied functional responses. For example, while classical Ser23/24 phosphorylation mediates accelerated relaxation, protein kinase C phosphorylation of cTnI serves as a brake on contractile function. Additionally, the functional response of cTnI multi-site phosphorylation cannot necessarily be predicted from the response of individual sites alone. These complexities underscore the need for systematically evaluating single and multi-site phosphorylation on myofilament cellular and in vivo contractile function. Ultimately, a complete understanding of these multi-site responses requires work to establish site occupancy and dominance, kinase/phosphatase signaling balance, and the function of adaptive secondary phosphorylation. As cTnI phosphorylation is essential for modulating cardiac performance, future insight into the complex role of cTnI phosphorylation is important to establish sarcomere signaling in the healthy heart as well as identification of novel myofilament targets in the treatment of disease.

摘要

靶向肌丝的信号复合物对于调节心脏功能至关重要。该信号的一个核心靶标是心肌肌钙蛋白 I(cTnI)的磷酸化。本综述以 cTnI 磷酸化为模型探讨肌丝信号,讨论了理解复杂肌丝调节心脏功能的关键空白和未来方向。人心脏 cTnI 可在 14 个位点发生磷酸化,从而产生了具有多种功能反应的复杂调节网络。例如,虽然经典的 Ser23/24 磷酸化介导了松弛加速,但 cTnI 的蛋白激酶 C 磷酸化则成为收缩功能的制动。此外,cTnI 多位点磷酸化的功能反应不一定可以从单个位点的反应来预测。这些复杂性强调了需要系统地评估肌丝细胞和体内收缩功能的单一和多位点磷酸化。最终,要全面了解这些多位点反应,需要进行工作以确定位点占有率和主导性、激酶/磷酸酶信号平衡以及适应性二级磷酸化的功能。由于 cTnI 磷酸化对于调节心脏功能至关重要,因此未来深入了解 cTnI 磷酸化的复杂作用对于确定健康心脏中肌节信号以及确定疾病治疗中的新型肌丝靶点非常重要。

相似文献

1
Troponin I modulation of cardiac performance: Plasticity in the survival switch.
Arch Biochem Biophys. 2019 Mar 30;664:9-14. doi: 10.1016/j.abb.2019.01.025. Epub 2019 Jan 23.
2
Independent modulation of contractile performance by cardiac troponin I Ser43 and Ser45 in the dynamic sarcomere.
J Mol Cell Cardiol. 2015 Feb;79:264-74. doi: 10.1016/j.yjmcc.2014.11.022. Epub 2014 Dec 3.
3
Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function.
Circ Res. 2004 Nov 26;95(11):1091-9. doi: 10.1161/01.RES.0000149299.34793.3c. Epub 2004 Oct 28.
4
Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function.
Cell Physiol Biochem. 2018;45(6):2174-2186. doi: 10.1159/000488161. Epub 2018 Mar 10.
5
Myofilament incorporation and contractile function after gene transfer of cardiac troponin I Ser43/45Ala.
Arch Biochem Biophys. 2013 Jul 1;535(1):49-55. doi: 10.1016/j.abb.2012.12.021. Epub 2013 Jan 11.
6
Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres.
J Biol Chem. 2016 Oct 7;291(41):21817-21828. doi: 10.1074/jbc.M116.746172. Epub 2016 Aug 24.
7
Protein kinase C and A sites on troponin I regulate myofilament Ca2+ sensitivity and ATPase activity in the mouse myocardium.
J Physiol. 2003 Nov 1;552(Pt 3):845-57. doi: 10.1113/jphysiol.2003.045260. Epub 2003 Aug 15.
9
Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity.
J Mol Cell Cardiol. 2020 Feb;139:135-147. doi: 10.1016/j.yjmcc.2020.01.007. Epub 2020 Jan 22.

引用本文的文献

3
Hyperactive mTORC1/4EBP1 signaling dysregulates proteostasis and accelerates cardiac aging.
Geroscience. 2025 Apr;47(2):1823-1836. doi: 10.1007/s11357-024-01368-w. Epub 2024 Oct 9.
4
Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation.
Circ Res. 2024 Oct 25;135(10):974-989. doi: 10.1161/CIRCRESAHA.124.325223. Epub 2024 Sep 27.
5
Focus on cardiac troponin complex: From gene expression to cardiomyopathy.
Genes Dis. 2024 Mar 11;11(6):101263. doi: 10.1016/j.gendis.2024.101263. eCollection 2024 Nov.
6
Post-translational modifications of vertebrate striated muscle myosin heavy chains.
Cytoskeleton (Hoboken). 2024 Dec;81(12):832-842. doi: 10.1002/cm.21857. Epub 2024 Apr 8.
7
Thin filament regulation of cardiac muscle power output: Implications for targets to improve human failing hearts.
J Gen Physiol. 2023 May 1;155(5). doi: 10.1085/jgp.202213290. Epub 2023 Mar 31.

本文引用的文献

2
Functional communication between PKC-targeted cardiac troponin I phosphorylation sites.
Arch Biochem Biophys. 2017 Aug 1;627:1-9. doi: 10.1016/j.abb.2017.05.019. Epub 2017 Jun 3.
3
Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration.
Front Physiol. 2016 Dec 15;7:567. doi: 10.3389/fphys.2016.00567. eCollection 2016.
4
Functionally conservative substitutions at cardiac troponin I S43/45.
Arch Biochem Biophys. 2016 Jul 1;601:42-7. doi: 10.1016/j.abb.2016.02.002. Epub 2016 Feb 8.
5
Independent modulation of contractile performance by cardiac troponin I Ser43 and Ser45 in the dynamic sarcomere.
J Mol Cell Cardiol. 2015 Feb;79:264-74. doi: 10.1016/j.yjmcc.2014.11.022. Epub 2014 Dec 3.
6
Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation.
J Mol Cell Cardiol. 2014 Nov;76:257-64. doi: 10.1016/j.yjmcc.2014.09.013. Epub 2014 Sep 22.
8
Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins.
Circ Cardiovasc Genet. 2014 Apr;7(2):132-143. doi: 10.1161/CIRCGENETICS.113.000324. Epub 2014 Feb 28.
9
Protein kinase C phosphomimetics alter thin filament Ca2+ binding properties.
PLoS One. 2014 Jan 22;9(1):e86279. doi: 10.1371/journal.pone.0086279. eCollection 2014.
10
Contractile protein phosphorylation predicts human heart disease phenotypes.
Am J Physiol Heart Circ Physiol. 2013 Jun 15;304(12):H1644-50. doi: 10.1152/ajpheart.00957.2012. Epub 2013 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验