Jász Ádám, Rák Ádám, Ladjánszki István, Tornai Gábor János, Cserey György
StreamNovation Ltd., H-1083, Budapest, Práter utca 50/a., Hungary.
Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083, Budapest, Práter utca 50/a., Hungary.
J Mol Graph Model. 2020 May;96:107536. doi: 10.1016/j.jmgm.2020.107536. Epub 2020 Jan 16.
Computational chemistry simulations are extensively used to model natural phenomena. To maintain performance similar to molecular mechanics, but achieve comparable accuracy to quantum mechanical calculations, many researchers are using hybrid QM/MM methods. In this article we evaluate our GPU-accelerated ONIOM implementation by measurements on the crambin and HIV integrase proteins with different size QM model systems. We demonstrate that by using a larger QM region, a better energy accuracy can be achieved at the expense of simulation time. This trade-off is important to consider for the researcher running QM/MM calculations. Furthermore, we show that the ONIOM energy monotonically approaches the pure quantum mechanical energy of the whole system. The experiments are made feasible by utilizing the cutting-edge BrianQC quantum chemistry module for Hartree-Fock level SCF and our GPU-accelerated MMFF94 force field implementation for molecular mechanics calculations.
计算化学模拟被广泛用于对自然现象进行建模。为了保持与分子力学相似的性能,但达到与量子力学计算相当的精度,许多研究人员正在使用混合QM/MM方法。在本文中,我们通过对不同大小QM模型系统的crambin和HIV整合酶蛋白进行测量,评估了我们的GPU加速ONIOM实现。我们证明,通过使用更大的QM区域,可以以模拟时间为代价实现更好的能量精度。这种权衡对于运行QM/MM计算的研究人员来说是一个需要考虑的重要因素。此外,我们表明ONIOM能量单调地接近整个系统的纯量子力学能量。利用用于Hartree-Fock水平自洽场的前沿BrianQC量子化学模块和用于分子力学计算的GPU加速MMFF94力场实现,使实验变得可行。