Suppr超能文献

使用QuPath软件对大型动物脑组织免疫组织化学染色进行自动定量分析。

Automated Quantification of Immunohistochemical Staining of Large Animal Brain Tissue Using QuPath Software.

作者信息

Morriss Nicholas J, Conley Grace M, Ospina Sara M, Meehan Iii William P, Qiu Jianhua, Mannix Rebekah

机构信息

Division of Emergency Medicine, Boston Children's Hospital, United States.

Department of Orthopedics, Boston Children's Hospital, United States; Department of Pediatrics, Boston Children's Hospital, United States; Harvard Medical School, United States; Micheli Center for Sports Injury Prevention, United States.

出版信息

Neuroscience. 2020 Mar 1;429:235-244. doi: 10.1016/j.neuroscience.2020.01.006. Epub 2020 Jan 23.

Abstract

Large scale unbiased quantification of immunohistochemistry (IHC) is time consuming, expensive, and/or limited in scope. Heterogeneous tissue types such as brain tissue have presented a further challenge to the development of automated analysis, as differing cellular morphologies result in either limited applicability or require large amounts of training tissue for machine-learning methods. Here we present the use of QuPath, a free and open source software, to quantify whole-brain sections stained with the immunohistochemical markers IBA1 and AT8, for microglia and phosphorylated tau respectively. The pixel-based method of analysis herein allows for statistical comparison of global protein expression between brains and generates heat-maps of stain intensity, visualizing stain signal across whole sections and permitting more specific investigation of regions of interest. This method is fast, automated, unbiased, and easily replicable. We compared swine brains that had undergone a closed head traumatic brain injury with brains of sham animals, and found a global increase in both microglial signal expression and phosphorylated tau. We discuss the IHC methods necessary to utilize this analysis and provide detailed instruction on the use of QuPath in the pixel-based analysis of whole-slide images.

摘要

免疫组织化学(IHC)的大规模无偏量化既耗时、成本高,且范围有限。诸如脑组织等异质组织类型对自动化分析的发展提出了进一步挑战,因为不同的细胞形态要么导致适用性有限,要么需要大量训练组织用于机器学习方法。在此,我们展示了使用QuPath(一款免费开源软件)来量化分别用免疫组织化学标记物IBA1和AT8染色的全脑切片,IBA1和AT8分别用于标记小胶质细胞和磷酸化tau蛋白。本文基于像素的分析方法能够对不同大脑之间的整体蛋白质表达进行统计比较,并生成染色强度热图,直观呈现整个切片的染色信号,便于对感兴趣区域进行更具体的研究。该方法快速、自动化、无偏且易于重复。我们将遭受闭合性颅脑创伤性脑损伤的猪脑与假手术动物的脑进行了比较,发现小胶质细胞信号表达和磷酸化tau蛋白均出现整体增加。我们讨论了进行此分析所需的免疫组织化学方法,并提供了在基于像素的全玻片图像分析中使用QuPath的详细说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验