The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province, College of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
J Colloid Interface Sci. 2020 Apr 1;565:426-435. doi: 10.1016/j.jcis.2020.01.063. Epub 2020 Jan 19.
Growing use of comfortable functional textiles has resulted in increased demand of excellent directional moisture (sweat) transport feature in textiles. However, designing such anisotropic functional textiles that allow fast penetration of sweat through one direction but prevent its movement in the reverse direction is still a challenging task. In this regard, fabrication of a novel Janus membrane with multi-scaled interconnected inter- and intra-fiber pores for enhanced directional moisture transport designed by a rational combination of superhydrophilic hydrolyzed porous polyacrylonitrile (HPPAN) nanofibers and hydrophobic polyurethane (PU) fibers via electrospinning may be a very useful approach.
PAN/PVP composite nanofibers were electrospun using PAN/PVP composite solution dissolved in DMF. After electrospinning, electrospun fibers were subjected extensive washing process to selectively remove PVP from the fiber matrix to develop highly rough and porous PAN (PPAN) nanofibers. The resultant PPAN nanofibers were then hydrolyzed to further improve their wettability. Finally, a layer of PU fibers was directly deposited on the HPPAN nanofibers via electrospinning to fabricate the subsequent Janus membrane.
The resultant PU/HPPAN Janus membranes display instant moisture transport in the positive direction with exceptional directional moisture transport index (R = 1311.3%), whereas, offer superior resistance (i.e. breakthrough pressure ≥17.1 cm HO) to the moisture movement in the reverse direction. Moreover, a plausible mechanism articulating the role of inter- and intra-porosity for the enhanced directional moisture transport has been proposed. Successful fabrication of such fascinating Janus membranes based on the proposed coherent mechanism opens a new insight into the engineering of novel functional textiles for fast sweat release and personal drying applications.
舒适功能性纺织品的使用日益增加,导致人们对纺织品优异的定向导湿(汗)性能的需求增加。然而,设计允许汗水快速渗透一个方向但防止其反向移动的各向异性功能纺织品仍然是一项具有挑战性的任务。在这方面,通过合理组合超亲水水解多孔聚丙烯腈(HPPAN)纳米纤维和疏水性聚氨酯(PU)纤维,通过静电纺丝设计具有增强定向导湿功能的新型 Janus 膜是一种非常有用的方法,这种 Janus 膜具有多尺度互连的纤维内和纤维间孔,可增强水分传输。
使用溶解在 DMF 中的 PAN/PVP 复合溶液通过静电纺丝来纺制 PAN/PVP 复合纳米纤维。静电纺丝后,将静电纺丝纤维进行广泛的洗涤处理,以选择性地从纤维基质中去除 PVP,从而开发出高度粗糙和多孔的 PAN(PPAN)纳米纤维。然后,将所得的 PPAN 纳米纤维进一步水解以进一步提高其润湿性。最后,通过静电纺丝直接将一层 PU 纤维沉积在 HPPAN 纳米纤维上,以制造后续的 Janus 膜。
所得的 PU/HPPAN Janus 膜在正向具有即时的水分传输,具有出色的定向水分传输指数(R=1311.3%),而在反向提供优异的阻力(即突破压力≥17.1 cmHO)。此外,提出了一种解释增强定向水分传输的内-和内-孔隙作用的合理机制。基于提出的连贯机制成功制造出这种迷人的 Janus 膜,为快速释放汗水和个人干燥应用的新型功能性纺织品的工程设计提供了新的见解。