Suppr超能文献

基于新型脉冲检测器和非局部均值的乳腺X线图像高效去噪框架

Efficient Denoising Framework for Mammogram Images with a New Impulse Detector and Non-Local Means.

作者信息

Rajaguru Harikumar, S R Sannasi Chakravarthy

机构信息

Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, India.

出版信息

Asian Pac J Cancer Prev. 2020 Jan 1;21(1):179-183. doi: 10.31557/APJCP.2020.21.1.179.

Abstract

OBJECTIVE

The survival rates of breast cancer are increasing as screening and diagnosis improve. The removal of noise is revealed to be a significant step for automatic - computer aided detection (CAD) of microcalcification in digital mammography.

METHODS

In this paper, a combined approach for eradicating impulse noise from digital mammograms is proposed. The process is achieved in two stages, detection of noise followed by filtering of noise. The detection of noise is carried out by using Modified Robust Outlyingness Ratio (mROR) trailed by an extended NL (Non-Local)-means filter for filtering mechanism.

RESULTS

According to the value of mROR, all pixels in mammogram images are divided into four distinct groups. In each cluster, many decision rules are then applied for detecting the impulse noise. Filtering is done with NL-means filter by providing a reference mammogram image.

CONCLUSION

The comparative analysis and evaluated results are compared with some existing filters which indicate that the proposed structure outperforms the analysed result of others.

摘要

目的

随着筛查和诊断水平的提高,乳腺癌的生存率正在上升。去除噪声被证明是数字乳腺摄影中微钙化自动计算机辅助检测(CAD)的重要一步。

方法

本文提出了一种消除数字乳腺X线照片中脉冲噪声的组合方法。该过程分两个阶段完成,即噪声检测和噪声滤波。噪声检测通过使用改进的鲁棒离群率(mROR)进行,随后使用扩展的非局部均值(NL)滤波器进行滤波。

结果

根据mROR的值,乳腺X线照片图像中的所有像素被分为四个不同的组。在每个聚类中,然后应用许多决策规则来检测脉冲噪声。通过提供参考乳腺X线照片图像,使用NL均值滤波器进行滤波。

结论

将比较分析和评估结果与一些现有滤波器进行了比较,结果表明所提出的结构优于其他分析结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0047/7294012/130ff678a720/APJCP-21-179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验