Li Zhiming, Raabe Dierk
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
JOM (1989). 2017;69(11):2099-2106. doi: 10.1007/s11837-017-2540-2. Epub 2017 Aug 21.
We present a brief overview on recent developments in the field of strong and ductile non-equiatomic high-entropy alloys (HEAs). The materials reviewed are mainly based on massive transition-metal solute solutions and exhibit a broad spectrum of microstructures and mechanical properties. Three relevant aspects of such non-equiatomic HEAs with excellent strength-ductility combination are addressed in detail, namely phase stability-guided design, controlled and inexpensive bulk metallurgical processing routes for appropriate microstructure and compositional homogeneity, and the resultant microstructure-property relations. In addition to the multiple principal substitutional elements used in these alloys, minor interstitial alloying elements are also considered. We show that various groups of strong and ductile HEAs can be obtained by shifting the alloy design strategy from single-phase equiatomic to dual- or multiphase non-equiatomic compositional configurations with carefully designed phase instability. This design direction provides ample possibilities for joint activation of a number of strengthening and toughening mechanisms. Some potential research efforts which can be conducted in the future are also proposed.
我们简要概述了强韧性非等原子高熵合金(HEAs)领域的最新进展。所综述的材料主要基于大量过渡金属溶质溶液,并展现出广泛的微观结构和力学性能。本文详细讨论了这类具有优异强度-延展性组合的非等原子高熵合金的三个相关方面,即相稳定性导向设计、用于获得适当微观结构和成分均匀性的可控且廉价的块体冶金加工路线,以及由此产生的微观结构-性能关系。除了这些合金中使用的多种主要置换元素外,还考虑了少量间隙合金元素。我们表明,通过将合金设计策略从单相等原子转变为精心设计相不稳定性的双相或多相非等原子成分配置,可以获得各类强韧性高熵合金。这种设计方向为多种强化和增韧机制的联合激活提供了充足的可能性。我们还提出了一些未来可能开展的潜在研究工作。