Han Liuliu, Rao Ziyuan, Souza Filho Isnaldi R, Maccari Fernando, Wei Ye, Wu Ge, Ahmadian Ali, Zhou Xuyang, Gutfleisch Oliver, Ponge Dirk, Raabe Dierk, Li Zhiming
Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
Functional Materials, Materials Science, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Adv Mater. 2021 Sep;33(37):e2102139. doi: 10.1002/adma.202102139. Epub 2021 Aug 1.
The lack of strength and damage tolerance can limit the applications of conventional soft magnetic materials (SMMs), particularly in mechanically loaded functional devices. Therefore, strengthening and toughening of SMMs is critically important. However, conventional strengthening concepts usually significantly deteriorate soft magnetic properties, due to Bloch wall interactions with the defects used for hardening. Here a novel concept to overcome this dilemma is proposed, by developing bulk SMMs with excellent mechanical and attractive soft magnetic properties through coherent and ordered nanoprecipitates (<15 nm) dispersed homogeneously within a face-centered cubic matrix of a non-equiatomic CoFeNiTaAl high-entropy alloy (HEA). Compared to the alloy in precipitate-free state, the alloy variant with a large volume fraction (>42%) of nanoprecipitates achieves significantly enhanced strength (≈1526 MPa) at good ductility (≈15%), while the coercivity is only marginally increased (<10.7 Oe). The ordered nanoprecipitates and the resulting dynamic microband refinement in the matrix significantly strengthen the HEAs, while full coherency between the nanoprecipitates and the matrix leads at the same time to the desired insignificant pinning of the magnetic domain walls. The findings provide guidance for developing new high-performance materials with an excellent combination of mechanical and soft magnetic properties as needed for the electrification of transport and industry.
强度和损伤容限的不足会限制传统软磁材料(SMM)的应用,尤其是在承受机械载荷的功能器件中。因此,对SMM进行强化增韧至关重要。然而,由于布洛赫壁与用于强化的缺陷之间的相互作用,传统的强化概念通常会显著降低软磁性能。在此,提出了一种克服这一困境的新方法,即通过在非等原子CoFeNiTaAl高熵合金(HEA)的面心立方基体中均匀分散相干且有序的纳米析出相(<15 nm),来开发具有优异机械性能和诱人软磁性能的块状SMM。与无析出相状态的合金相比,纳米析出相体积分数较大(>42%)的合金变体在良好的延展性(≈15%)下实现了显著增强的强度(≈1526 MPa),而矫顽力仅略有增加(<10.7 Oe)。有序的纳米析出相以及基体中由此产生的动态微带细化显著强化了HEA,而纳米析出相与基体之间的完全相干性同时导致了磁畴壁所需的微小钉扎。这些发现为开发新型高性能材料提供了指导,这类材料具有交通运输和工业电气化所需的机械性能和软磁性能优异组合。