Suppr超能文献

3D打印神经元等效电路:一项本科实验室练习

3D Printing Neuron Equivalent Circuits: An Undergraduate Laboratory Exercise.

作者信息

Giglia Giuseppe, Crisp Kevin, Musotto Giulio, Sardo Pierangelo, Ferraro Giuseppe

机构信息

Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Human Physiology, University of Palermo, Palermo, 90129.

Biology Department, St. Olaf College, Northfield, MN 55057.

出版信息

J Undergrad Neurosci Educ. 2019 Dec 21;18(1):T1-T8. eCollection 2019 Fall.

Abstract

The electrical equivalent circuit for a neuron is composed of common electrical components in a configuration that replicates the passive electrical properties and behaviors of the neural membrane. It is a powerful tool used to derive such fundamental neurophysiological equations as the Hodgkin-Huxley equations, and it is also the basis for well-known exercises that help students to model the passive (Ohmic) properties of the neuronal membrane. Unfortunately, as these exercises require basic knowledge of electronics, they are generally not physically conducted in biomedical courses, but remain merely conceptual exercises in a book or simulations on a computer. In such manifestations, they lack the "hands-on" appeal for students and teachers afforded by laboratory experimentations. Here, we propose a new approach to these experiments in which a desktop 3D printer and conductive paint are used to build the circuit and the popular programmable microcontroller, the Arduino UNO, is used as a graphical oscilloscope when connected to a standard computer. This set-up has the advantage of being very easy to build and less clumsy than a circuit in a prototyping board or connected with alligator clips, with the added benefit of being conveniently portable for classroom demonstrations. Most importantly, this method allows the monitoring of real-time changes in the current flowing through the circuit by means of a graphical display (by way of the Arduino) at a fraction of the cost of commercially available oscilloscopes.

摘要

神经元的等效电路由常见的电气元件组成,其配置方式复制了神经膜的被动电学特性和行为。它是推导诸如霍奇金 - 赫胥黎方程等基本神经生理方程的有力工具,也是帮助学生模拟神经元膜被动(欧姆)特性的著名练习的基础。不幸的是,由于这些练习需要电子学的基础知识,它们通常不在生物医学课程中实际进行,而仅仅是书本上的概念性练习或计算机上的模拟。在这种形式下,它们缺乏实验室实验为学生和教师提供的“实践”吸引力。在这里,我们提出了一种新的实验方法,其中使用桌面3D打印机和导电漆来构建电路,并将流行的可编程微控制器Arduino UNO连接到标准计算机时用作图形示波器。这种设置具有非常易于构建的优点,并且比原型板上的电路或用鳄鱼夹连接的电路更不笨拙,还具有便于携带用于课堂演示的额外好处。最重要的是,这种方法允许通过图形显示(通过Arduino)以商用示波器成本的一小部分来监测流过电路的电流的实时变化。

相似文献

引用本文的文献

本文引用的文献

2
Open Labware: 3-D printing your own lab equipment.开放式实验器皿:自行 3D 打印实验设备。
PLoS Biol. 2015 Mar 20;13(3):e1002086. doi: 10.1371/journal.pbio.1002086. eCollection 2015 Mar.
6
Arduino: a low-cost multipurpose lab equipment.Arduino:一种低成本的多用实验室设备。
Behav Res Methods. 2012 Jun;44(2):305-13. doi: 10.3758/s13428-011-0163-z.
8
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.膜的电位、阻抗和整流。
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验