Wang Xiao-Tong, Ouyang Ting, Wang Ling, Zhong Jia-Huan, Liu Zhao-Qing
School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China.
Angew Chem Int Ed Engl. 2020 Apr 16;59(16):6492-6499. doi: 10.1002/anie.202000690. Epub 2020 Feb 28.
Herein, we highlight redox-inert Zn in spinel-type oxide (Zn Ni Co O ) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn segregation has been identified experimentally and theoretically under oxygen-evolving condition, the newly formed V -O-Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn-air battery is constituted employing the structurally optimized Zn Ni Co O nanoparticles supported on N-doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm ), high open circuit potential (1.48 V vs. Zn), excellent durability, and high-rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of Zn Ni Co O oxides after the OER test.
在此,我们强调尖晶石型氧化物(ZnNiCoO)中氧化还原惰性的Zn,以协同优化物理孔隙结构并增加催化剂表面活性物种的形成。在析氧条件下,通过实验和理论鉴定了Zn偏析的存在,新形成的V -O-Co使活性中心Co与含氧物种之间具有更合适的结合相互作用,从而产生优异的氧还原反应(ORR)性能。此外,构建了一种液流锌空气电池,采用负载在氮掺杂碳纳米管(ZNCO/NCNTs)上结构优化的ZnNiCoO纳米颗粒作为高效空气阴极,该电池具有显著的功率密度(109.1 mW cm)、高开路电位(相对于Zn为1.48 V)、优异的耐久性和高倍率性能。这一发现可以解释在析氧反应(OER)测试后实验观察到的ZnNiCoO氧化物ORR活性增强的现象。