Ma Jie, Xing Siyang, Wang Yabo, Yang Jinhu, Yu Fei
College of Marine Ecology and Environment, Shanghai Ocean University, 201306, Shanghai, People's Republic of China.
School of Civil Engineering, Kashi University, 844000, Kashi, People's Republic of China.
Nanomicro Lett. 2024 Mar 4;16(1):143. doi: 10.1007/s40820-024-01371-y.
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnNiO electrode in situ growth on carbon felt (ZnNiO@CF) through constraining the rate of OH generation in the hydrothermal method. ZnNiO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the ZnNiO@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, ZnNiO@CF achieved ultrahigh desalination capacity (128.9 mg g), ultra-low energy consumption (0.164 kW h kg), high salt removal rate (1.21 mg g min), and good cyclability. The thermodynamic facilitation and Na intercalation mechanism of ZnNiO@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
尽管过渡金属氧化物(TMOs)作为电容去离子(CDI)电极具有广阔的应用前景,但其用于储钠的实际容量却远低于理论容量,这成为了一个主要障碍。在此,我们通过在水热法中控制OH生成速率,在碳毡(ZnNiO@CF)上原位生长动力学有利的ZnNiO电极。ZnNiO@CF呈现出具有三维开放孔的高密度分级纳米片结构,有利于离子传输/电子转移。并且调节适量的氧化还原惰性Zn掺杂可以增强表面电活性位点、氧化还原活性Ni物种的实际活性以及降低吸附能,从而促进ZnNiO@CF的吸附动力学和热力学。得益于动力学 -热力学促进机制,ZnNiO@CF实现了超高脱盐容量(128.9 mg g)、超低能耗(0.164 kW h kg)、高脱盐速率(1.21 mg g min)以及良好的循环稳定性。分别通过密度泛函理论计算和带耗散监测的电化学石英晶体微天平确定了ZnNiO@CF的热力学促进和Na嵌入机制。这项研究为控制电化学有利形态提供了新的见解,并表明氧化还原惰性的Zn掺杂对于提高CDI电极的电化学性能至关重要。