Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany.
J Am Chem Soc. 2020 Feb 19;142(7):3613-3625. doi: 10.1021/jacs.9b13725. Epub 2020 Feb 7.
High-level quantum electronic structure calculations are used to provide a deep insight into the mechanism and stereocontrolling factors of two recently developed catalytic asymmetric Diels-Alder (DA) reactions of cinnamate esters with cyclopentadiene. The reactions employ two structurally and electronically very different in situ silylated enantiopure Lewis acid organocatalysts: i.e., binaphthyl-allyl-tetrasulfone (BALT) and imidodiphosphorimidate (IDPi). Each of these catalysts activates only specific substrates in an enantioselective fashion. Emphasis is placed on identifying and quantifying the key noncovalent interactions responsible for the selectivity of these transformations, with the final aim of aiding in the development of designing principles for catalysts with a broader scope. Our results shed light into the mechanism through which the catalyst architecture determines the selectivity of these transformations via a delicate balance of dispersion and steric interactions.
采用高水平量子电子结构计算方法,深入研究了最近开发的肉桂酸酯与环戊二烯的两种催化不对称 Diels-Alder(DA)反应的机制和立体控制因素。这些反应采用了两种结构和电子性质非常不同的原位硅烷基化手性纯路易斯酸有机催化剂:联萘烯基-烯丙基-四砜(BALT)和亚氨基二磷酸酯(IDPi)。每种催化剂都以对映选择性的方式仅激活特定的底物。重点是确定和量化负责这些转化选择性的关键非共价相互作用,最终目的是帮助开发具有更广泛应用范围的催化剂的设计原则。我们的研究结果揭示了通过催化剂结构通过分散和空间相互作用的微妙平衡来确定这些转化选择性的机制。