Suppr超能文献

基于紧束缚量子化学计算的元动力学模拟对化合物、构象异构体和反应空间的探索

Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations.

作者信息

Grimme Stefan

机构信息

Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry , University of Bonn , Beringstrasse 4 , 53115 Bonn , Germany.

出版信息

J Chem Theory Comput. 2019 May 14;15(5):2847-2862. doi: 10.1021/acs.jctc.9b00143. Epub 2019 Apr 12.

Abstract

The semiempirical tight-binding based quantum chemistry method GFN2-xTB is used in the framework of meta-dynamics (MTD) to globally explore chemical compound, conformer, and reaction space. The biasing potential given as a sum of Gaussian functions is expressed with the root-mean-square-deviation (RMSD) in Cartesian space as a metric for the collective variables. This choice makes the approach robust and generally applicable to three common problems (i.e., conformer search, chemical reaction space exploration in a virtual nanoreactor, and for guessing reaction paths). Because of the inherent locality of the atomic RMSD, functional group or fragment selective treatments are possible facilitating the investigation of catalytic processes where, for example, only the substrate is thermally activated. Due to the approximate character of the GFN2-xTB method, the resulting structure ensembles require further refinement with more sophisticated, for example, density functional or wave function theory methods. However, the approach is extremely efficient running routinely on common laptop computers in minutes to hours of computation time even for realistically sized molecules with a few hundred atoms. Furthermore, the underlying potential energy surface for molecules containing almost all elements ( Z = 1-86) is globally consistent including the covalent dissociation process and electronically complicated situations in, for example, transition metal systems. As examples, thermal decomposition, ethyne oligomerization, the oxidation of hydrocarbons (by oxygen and a P450 enzyme model), a Miller-Urey model system, a thermally forbidden dimerization, and a multistep intramolecular cyclization reaction are shown. For typical conformational search problems of organic drug molecules, the new MTD(RMSD) algorithm yields lower energy structures and more complete conformer ensembles at reduced computational effort compared with its already well performing predecessor.

摘要

基于半经验紧束缚的量子化学方法GFN2-xTB被用于元动力学(MTD)框架中,以全局探索化合物、构象异构体和反应空间。作为高斯函数之和给出的偏置势,在笛卡尔空间中用均方根偏差(RMSD)表示,作为集体变量的度量。这种选择使该方法具有鲁棒性,并且通常适用于三个常见问题(即构象异构体搜索、虚拟纳米反应器中的化学反应空间探索以及反应路径猜测)。由于原子RMSD固有的局部性,官能团或片段选择性处理成为可能,便于研究催化过程,例如,在催化过程中只有底物被热激活。由于GFN2-xTB方法的近似性质,所得的结构系综需要用更复杂的方法(例如密度泛函或波函数理论方法)进一步优化。然而,即使对于具有数百个原子的实际大小的分子,该方法在普通笔记本电脑上常规运行只需几分钟到几小时的计算时间,效率极高。此外,包含几乎所有元素(Z = 1 - 86)的分子的基础势能面在全局上是一致的,包括共价解离过程以及例如过渡金属系统中电子复杂的情况。文中展示了热分解、乙炔低聚、碳氢化合物的氧化(通过氧气和一个P450酶模型)、一个米勒 - 尤里模型系统、一个热禁阻的二聚反应以及一个多步分子内环化反应等例子。对于有机药物分子典型的构象搜索问题,与已经表现良好的前身算法相比,新的MTD(RMSD)算法以更少的计算量产生能量更低的结构和更完整的构象异构体系综。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验