State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , 38 Xueyuan Road , Beijing 100191 , China.
National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , China.
J Am Chem Soc. 2020 Feb 19;142(7):3506-3512. doi: 10.1021/jacs.9b12211. Epub 2020 Feb 11.
A highly efficient di--glycosyltransferase GgCGT was discovered from the medicinal plant . GgCGT catalyzes a two-step di--glycosylation of flopropione-containing substrates with conversion rates of >98%. To elucidate the catalytic mechanisms of GgCGT, we solved its crystal structures in complex with UDP-Glc, UDP-Gal, UDP/phloretin, and UDP/nothofagin, respectively. Structural analysis revealed that the sugar donor selectivity was controlled by the hydrogen-bond interactions of sugar hydroxyl groups with D390 and other key residues. The di--glycosylation capability of GgCGT was attributed to a spacious substrate-binding tunnel, and the G389K mutation could switch di- to mono--glycosylation. GgCGT is the first di--glycosyltransferase with a crystal structure, and the first -glycosyltransferase with a complex structure containing a sugar acceptor. This work could benefit the development of efficient biocatalysts to synthesize -glycosides with medicinal potential.
我们从药用植物中发现了一种高效的二糖基转移酶 GgCGT。GgCGT 可催化含丙二酰基的底物进行两步二糖基化反应,转化率>98%。为了阐明 GgCGT 的催化机制,我们分别解析了其与 UDP-Glc、UDP-Gal、UDP/phloretin 和 UDP/nothofagin 复合物的晶体结构。结构分析表明,糖供体的选择性由糖羟基与 D390 和其他关键残基的氢键相互作用控制。GgCGT 的二糖基化能力归因于一个宽敞的底物结合隧道,而 G389K 突变可以将二糖基化转换为单糖基化。GgCGT 是第一个具有晶体结构的二糖基转移酶,也是第一个含有糖受体复合物结构的 -糖基转移酶。这项工作有助于开发高效的生物催化剂,以合成具有药用潜力的 -糖苷。