State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191 Beijing, China.
Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 100191 Beijing, China.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30816-30823. doi: 10.1073/pnas.2012745117. Epub 2020 Nov 16.
Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di--glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two -glycosyltransferases (CGTs), i.e., CGTa for -glucosylation of the 2-hydroxyflavanone aglycone and CGTb for -arabinosylation of the mono--glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including , , ssp. , and , and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.
山柰酚二糖苷和异山柰酚二糖苷是广泛分布于高等植物(包括谷类作物和药用植物)中的生物活性天然产物。它们的生物合成可能与植物防御有关。然而,对于这些具有不同糖残基的黄酮类双糖苷的糖基化生物合成途径知之甚少。本文报道了(异)山柰酚二糖苷的生物合成是由两个β-糖基转移酶(CGTs)顺序催化的,即 CGTa 催化 2-羟基黄烷酮苷元的β-葡萄糖基化,CGTb 催化单-葡萄糖苷的β-阿拉伯糖基化。同一植物的两种酶具有高度同源性,但糖供体和受体的选择性却显著不同。从七种双子叶植物和单子叶植物中克隆和鉴定了 14 种 CGTa 和 CGTb 酶,包括 、 、 、 和 ,并通过 RNA 干扰和过表达验证了其中三种酶的体内功能。通过转录组分析,在 119 种其他植物中发现了同源基因,表明该途径是(异)山柰酚二糖苷生物合成的普遍途径。此外,我们通过对关键氨基酸的结构分析和突变,解析了五个 CGTs 的晶体结构,并实现了 SbCGTb 到 SbCGTa 的功能转换。本文发现的 CGT 酶允许高效合成(异)山柰酚二糖苷,而普遍的糖基化途径为研究高等植物的化学防御机制提供了一个平台。