Atkins W M, Sligar S G
Department of Biochemistry, University of Illinois, Urbana 61801.
J Biol Chem. 1988 Dec 15;263(35):18842-9.
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760).
利用定点诱变和具有改变氢键能力的底物类似物相结合的方法,研究了细胞色素P - 450cam活性位点氢键的作用。细胞色素P - 450cam通常催化单萜樟脑的区域特异性羟基化反应。这种可溶性细菌细胞色素P - 450的X射线晶体结构(普洛斯,T. L.,芬泽尔,B. C.,冈萨勒斯,I. C.,瓦格纳,G. C.,和克劳特,J.(1985年)《生物化学杂志》260,16122 - 16128)表明酪氨酸96与樟脑底物的羰基部分之间存在特定的氢键。已将酪氨酸96变为苯丙氨酸的定点突变体以及底物类似物硫代樟脑和莰烷用于从催化的几个方面探究这种相互作用。在室温下,与以天然酶和樟脑作为底物时获得的95%的高自旋铁酶相比,含有樟脑的突变酶和含有硫代樟脑的野生型酶结合后分别产生59%和65%的高自旋铁酶。平衡解离常数适度增加,从野生型蛋白的1.6微摩尔增加到野生型 - 硫代樟脑和突变体 - 樟脑复合物的3.0和3.3微摩尔。与细胞色素P - 450cam结合的莰烷在高自旋分数上有更大的降低(45%),并且相应地有更大的解离常数(46微摩尔),这表明樟脑的羰基部分除了作为氢键受体相互作用外,还起着重要的空间作用。突变酶以及含有硫代樟脑的野生型酶的绝对区域选择性丧失,除了5 - 外向 - 羟基异构体之外还产生几种羟基化产物。基于NADH氧化速率,对这些系统的底物特异性(kcat/KD)进行比较表明,突变酶和硫代樟脑 - 野生型复合物的特异性分别降低了5倍和7倍。用苯丙氨酸取代细胞色素P - 450cam活性位点的酪氨酸不会影响单加氧酶与氧化酶化学性质或过氧合酶活性的分支比(阿特金斯,W. M.,和斯利加,S. G.(1987年)《美国化学会志》109,3754 - 3760)。