Schrödinger GmbH, Q7 23, 68161 Mannheim, Germany.
Schrödinger Inc., 120 West 45th Street, New York, New York 10036, United States.
J Chem Inf Model. 2020 Mar 23;60(3):1432-1444. doi: 10.1021/acs.jcim.9b01118. Epub 2020 Feb 4.
Relative binding free energy (RBFE) prediction methods such as free energy perturbation (FEP) are important today for estimating protein-ligand binding affinities. Significant hardware and algorithmic improvements now allow for simulating congeneric series within days. Therefore, RBFE calculations have an enormous potential for structure-based drug discovery. As typically only a few representative crystal structures for a series are available, other ligands and design proposals must be reliably superimposed for meaningful results. An observed significant effect of the alignment on FEP led us to develop an alignment approach combining docking with maximum common substructure (MCS) derived core constraints from the most similar reference pose, named MCS-docking workflow. We then studied the effect of binding pose generation on the accuracy of RBFE predictions using six ligand series from five pharmaceutically relevant protein targets. Overall, the MCS-docking workflow generated consistent poses for most of the ligands in the investigated series. While multiple alignment methods often resulted in comparable FEP predictions, for most of the cases herein, the MCS-docking workflow produced the best accuracy in predictions. Furthermore, the FEP analysis data strongly support the hypothesis that the accuracy of RBFE predictions depends on input poses to construct the perturbation map. Therefore, an automated workflow without manual intervention minimizes potential errors and obtains the most useful predictions with significant impact for structure-based design.
相对结合自由能(RBFE)预测方法,如自由能微扰(FEP),对于估计蛋白质-配体结合亲和力非常重要。如今,显著的硬件和算法改进使得在几天内模拟同系列化合物成为可能。因此,RBFE 计算在基于结构的药物发现中有巨大的潜力。由于通常只有少数几个系列的代表性晶体结构可用,因此必须可靠地叠加其他配体和设计方案,才能获得有意义的结果。配体与靶蛋白的结合构象对于药物研发至关重要,配体结合构象的准确性直接影响药物分子与靶蛋白的相互作用和结合亲和力。我们观察到对接对齐方式对 FEP 有显著影响,因此我们开发了一种结合对接和最大公共子结构(MCS)核心约束的对齐方法,命名为 MCS-对接工作流程。我们随后使用来自最相似参考构象的最大公共子结构(MCS)核心约束,研究了结合构象生成对 RBFE 预测准确性的影响,使用了五个药物相关蛋白靶标中的六个配体系列。总体而言,MCS-对接工作流程为研究系列中的大多数配体生成了一致的构象。虽然多种对齐方法通常会产生可比的 FEP 预测,但在大多数情况下,MCS-对接工作流程产生的预测准确性最佳。此外,FEP 分析数据有力地支持了以下假设:RBFE 预测的准确性取决于构建微扰图的输入构象。因此,无需人工干预的自动化工作流程可以最小化潜在错误,并获得具有重大影响的最有用的预测结果,这对基于结构的设计具有重要意义。