German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany; Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany.
German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
Anal Chim Acta. 2020 Feb 22;1099:16-25. doi: 10.1016/j.aca.2019.11.043. Epub 2019 Nov 20.
This study reports on the development of a single-particle (sp) inductively coupled plasma mass spectrometry (ICP-MS) technique suitable for the multi-mode determination of nanoparticle (NP) metal mass fraction and number concentration. The described technique, which is based on a dual inlet system consisting of a pneumatic nebulizer (PN) and a microdroplet generator (MDG), allows for the sequential introduction of ionic metal calibrant solutions and nanoparticle suspensions via all combinations of the two inlets; thus allowing for a combination of three independent modes of analysis. A novel interface, assembled using standard analytical components (a demountable quartz ICP-MS torch, flexible non-conducting silicon tubing and various connectors), was used to interface the dual inlet system to an ICP-MS. The interface provided improved functionality, compared to a previous design. It is now possible to conveniently exchange and introduce standard solutions and samples via all inlet combinations, analyze them, and also wash the sample inlet systems while the whole setup is still connected to an operating ICP-MS. This setup provided seamless and robust operation in a total of three analysis modes, i.e. three ways to independently determine the metal mass fraction and NP number concentration. All three analyses modes could be carried out within a single analytical run lasting approximately 20 min. The unique feature of the described approach is that each analysis mode is based on a different calibration principle, thus constituting an independent way to determine metal mass fractions and nanoparticle number concentrations. Conducting the three independent state-of-the-art analysis, within a single analytical run, improves substantially the validation capabilities of sp-ICP-MS for NP analysis. To assess the technique's analytical performance, Au, Ag and CeO nanoparticles were analyzed. The determined average diameters for Au (56.7 ± 1.5 nm), Ag (72.8 ± 3.4 nm) and CeO (69.0 ± 6.4 nm) NPs were in close agreement for all three modes of analysis, as well as with the values provided by suppliers' for Au and Ag NPs (56.0 ± 0.5 for Au, 74.6 ± 3.8 nm for Ag). However, the determined average value for CeO was much higher than the expected 28.4 ± 10.4 nm, possibly due to NP agglomeration and the inability to detect NPs existing within the lower size range. The determined NP number concentrations, using analysis modes -I and -II, gave recoveries between 91 and 100% for the Au and Ag NP number concentrations. Whereas analysis mode -III showed a recovery of 70-88% for the same materials. Because of the polydispersity, the small size and polyhedral shape of the CeO NPs it was not possible to make NP number concentration comparisons for this material.
本研究报告了一种适用于多模式测定纳米颗粒(NP)金属质量分数和数浓度的单颗粒(sp)电感耦合等离子体质谱(ICP-MS)技术的开发。所描述的技术基于由气动雾化器(PN)和微滴生成器(MDG)组成的双入口系统,允许通过两个入口的所有组合顺序引入离子金属校准溶液和纳米颗粒悬浮液;从而允许组合三种独立的分析模式。使用标准分析组件(可拆卸石英 ICP-MS 炬、柔性非导电硅管和各种连接器)组装的新型接口,将双入口系统与 ICP-MS 接口。与以前的设计相比,该接口提供了更好的功能。现在可以通过所有入口组合方便地交换和引入标准溶液和样品,对其进行分析,并在整个设置仍连接到运行的 ICP-MS 时清洗样品入口系统。这种设置在总共三种分析模式下提供了无缝和稳健的操作,即独立确定金属质量分数和 NP 数浓度的三种方法。所有三种分析模式都可以在大约 20 分钟的单个分析运行中进行。所描述方法的独特之处在于,每种分析模式都基于不同的校准原理,因此构成了独立确定金属质量分数和纳米颗粒数浓度的方法。在单个分析运行中进行三种独立的最先进分析,大大提高了 sp-ICP-MS 对 NP 分析的验证能力。为了评估该技术的分析性能,分析了 Au、Ag 和 CeO 纳米颗粒。对于所有三种分析模式以及供应商提供的 Au 和 Ag NPs(56.0±0.5nm 用于 Au,74.6±3.8nm 用于 Ag)的值,确定的 Au(56.7±1.5nm)、Ag(72.8±3.4nm)和 CeO(69.0±6.4nm)NP 的平均直径非常接近。然而,对于 CeO 确定的平均粒径远高于预期的 28.4±10.4nm,这可能是由于 NP 团聚和无法检测到较低粒径范围内存在的 NPs。使用分析模式-I 和 -II 确定的 NP 数浓度,对于 Au 和 Ag NP 数浓度的回收率在 91%至 100%之间。而分析模式-III 对于相同材料的回收率为 70-88%。由于 CeO NPs 的多分散性、小尺寸和多面体形,对于这种材料,无法进行 NP 数浓度比较。