Suppr超能文献

跨语言频率与语义可学性:有标记研究的人工语言学习。

Cross-linguistic frequency and the learnability of semantics: Artificial language learning studies of evidentiality.

机构信息

Department of Linguistics and Cognitive Science, University of Delaware, United States of America.

Department of Linguistics and Cognitive Science, University of Delaware, United States of America.

出版信息

Cognition. 2020 Apr;197:104194. doi: 10.1016/j.cognition.2020.104194. Epub 2020 Jan 25.

Abstract

It is often assumed that cross-linguistically more prevalent distinctions are easier to learn (Typological Prevalence Hypothesis; TPH). Prior work supports this idea in phonology, morphology and syntax but has not addressed semantics. Using Artificial Language Learning experiments with adults, we test predictions made by the TPH about the relative learnability of semantic distinctions in the domain of evidentiality, i.e., the linguistic encoding of information source. As the TPH predicted, when exposed to miniature evidential morphological systems, adult speakers of English whose language does not encode evidentiality grammatically learned the typologically most prevalent system (marking indirect, reportative information) better compared to less-attested systems (Experiments 1-2). Similar patterns were observed when non-linguistic symbols were used to encode evidential distinctions (Experiment 3). Our data support the conjecture that some semantic distinctions are marked preferentially and acquired more easily compared to others in both language and other symbolic systems.

摘要

人们通常认为,跨语言中更常见的区别更容易学习(类型学普遍性假设;TPH)。先前的研究在语音、形态和句法方面支持了这一观点,但尚未涉及语义。我们使用成人的人工语言学习实验,测试 TPH 关于在证据语义领域(即语言对信息来源的编码)语义区别相对可学性的预测。正如 TPH 所预测的那样,当接触到微型证据形态系统时,母语为英语且语法上不编码证据的成年说话者与那些证据系统(标记间接、报告性信息)相比,更能学好类型学上最常见的系统(实验 1-2)。当使用非语言符号来编码证据区别时,也观察到了类似的模式(实验 3)。我们的数据支持这样一种假设,即在语言和其他符号系统中,一些语义区别比其他区别更优先地被标记,并更容易习得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验