Suppr超能文献

椎间盘的压电性。

Piezoelectricity in the Intervertebral disc.

机构信息

Bernal Institute, University of Limerick, Ireland.

Bernal Institute, University of Limerick, Ireland.

出版信息

J Biomech. 2020 Mar 26;102:109622. doi: 10.1016/j.jbiomech.2020.109622. Epub 2020 Jan 9.

Abstract

Lower back pain is a major global health challenge that can often be caused by degeneration of the Intervertebral Disc (IVD). While IVD biomechanics are a key factor in the degenerative cycle, many mechanotransduction pathways remain unknown, in particular the electro-mechanical coupling in the loaded tissue. However, despite evidence for a role in the mechanically-induced remodelling of similar tissue, piezoelectricity has been overlooked in the IVD. In this study, we investigate the piezoelectric properties of the Annulus Fibrosus (AF) and the Nucleus Pulposus (NP) by measuring the direct piezoelectric effect of mechanically-induced electrical potential change. To verify these findings, we conducted Piezoresponse Force Microscopy (PFM) to measure the inverse effect of electrically-induced deformation. We demonstrate that, for the first time, piezoelectricity is generated throughout the IVD. Piezoelectric effects were greater in the AF than the NP, owing to the organised collagen networks present. However, the piezoresponse found in the NP indicates piezoelectric properties of non-collagenous proteins that have not yet been studied. The voltage generated by longitudinal piezoelectricity in-vivo has been calculated to be ~1 nV locally, indicating that piezoelectric effects may directly affect cell alignment in the AF and may work in conjunction with streaming potentials throughout the IVD. In summary, we have highlighted an intricate electro-mechanical coupling that appears to have distinct physiological roles in the AF and NP. Further study is required to elucidate the cell response and determine the potential role of piezoelectric effects in regeneration and preventative measures from degeneration.

摘要

下背痛是一个全球性的健康挑战,通常是由椎间盘(IVD)退变引起的。虽然 IVD 生物力学是退行性周期的一个关键因素,但许多力学转导途径仍然未知,特别是在负载组织中的机电耦合。然而,尽管有证据表明在类似组织的机械诱导重塑中起作用,但压电性在 IVD 中被忽视了。在这项研究中,我们通过测量机械诱导电势变化的直接压电效应来研究纤维环(AF)和髓核(NP)的压电特性。为了验证这些发现,我们进行了压电力显微镜(PFM)测量来测量电诱导变形的逆效应。我们证明了,首次在整个 IVD 中产生了压电性。由于存在组织有序的胶原网络,AF 的压电效应大于 NP。然而,在 NP 中发现的压电阻抗表明了尚未研究过的非胶原蛋白的压电特性。体内纵向压电效应产生的电压已计算为局部约 1nV,这表明压电效应可能直接影响 AF 中的细胞排列,并可能与整个 IVD 中的流动电势协同作用。总之,我们强调了一种复杂的机电耦合,它在 AF 和 NP 中似乎具有明显的生理作用。需要进一步的研究来阐明细胞反应,并确定压电效应在再生和预防退变方面的潜在作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验