Suppr超能文献

高频击球员:高通量筛选中的讨厌的伪像。

Frequent hitters: nuisance artifacts in high-throughput screening.

机构信息

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China.

Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, PR China.

出版信息

Drug Discov Today. 2020 Apr;25(4):657-667. doi: 10.1016/j.drudis.2020.01.014. Epub 2020 Jan 24.

Abstract

One of the major challenges in early drug discovery is the recognition of frequent hitters (FHs), that is, compounds that nonspecifically bind to a range of macromolecular targets or false positives caused by various types of assay interferences. In this review, we survey the mechanisms underlying different types of FHs, including aggregators, spectroscopic interference compounds (i.e., luciferase inhibitors and fluorescent compounds), chemical reactive compounds, and promiscuous compounds. We also review commonly used experimental detection techniques and computational prediction models for FH identification. In addition, the rational applications of these computational filters are discussed. It is believed that, with the rational use of FH filters, the efficiency of drug discovery will be significantly improved.

摘要

早期药物发现面临的主要挑战之一是识别频繁命中化合物(FHs),即那些非特异性结合一系列大分子靶标或由各种类型的测定干扰引起的假阳性化合物。在这篇综述中,我们调查了不同类型 FHs 的潜在机制,包括聚集物、光谱干扰化合物(即荧光素酶抑制剂和荧光化合物)、化学反应性化合物和杂乱化合物。我们还回顾了常用于 FH 鉴定的实验检测技术和计算预测模型。此外,还讨论了这些计算筛选器的合理应用。相信通过合理使用 FH 筛选器,药物发现的效率将得到显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验