Suppr超能文献

借助可解释人工智能的预测性见解减轻药物发现中的分子聚集

Mitigating Molecular Aggregation in Drug Discovery With Predictive Insights From Explainable AI.

作者信息

Sturm Hunter, Teufel Jonas, Isfeld Kaitlin A, Friederich Pascal, Davis Rebecca L

机构信息

Department of Chemistry, University of Manitoba, Winnipeg, Canada.

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Angew Chem Int Ed Engl. 2025 Jul;64(29):e202503259. doi: 10.1002/anie.202503259. Epub 2025 Jun 1.

Abstract

Herein, we present the application of multi-channel graph attention network (MEGAN), our explainable AI (xAI) model, for the identification of small colloidally aggregating molecules (SCAMs). This work offers solutions to the long-standing problem of false positives caused by SCAMs in high-throughput screening for drug discovery and demonstrates the power of xAI in the classification of molecular properties that are not chemically intuitive based on our current understanding. We leverage xAI insights and molecular counterfactuals to design alternatives to problematic compounds in drug screening libraries. Additionally, we experimentally validate the MEGAN prediction classification for one of the counterfactuals and demonstrate the utility of counterfactuals for altering the aggregation properties of a compound through minor structural modifications. The integration of this method in high-throughput screening approaches will help combat and circumvent false positives, providing better lead molecules more rapidly and thus accelerating drug discovery cycles.

摘要

在此,我们展示了我们的可解释人工智能(xAI)模型——多通道图注意力网络(MEGAN)在识别小胶体聚集分子(SCAM)方面的应用。这项工作为药物发现高通量筛选中由SCAM导致的长期存在的假阳性问题提供了解决方案,并展示了xAI在基于我们当前理解对化学上不直观的分子性质进行分类方面的能力。我们利用xAI的见解和分子反事实来设计药物筛选库中问题化合物的替代物。此外,我们通过实验验证了MEGAN对其中一个反事实的预测分类,并证明了反事实通过微小结构修饰改变化合物聚集性质的效用。将该方法整合到高通量筛选方法中将有助于对抗和规避假阳性,更快地提供更好的先导分子,从而加速药物发现周期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验