Suppr超能文献

解码蛋白质赖氨酸乙酰转移酶中的别构通讯途径。

Decoding allosteric communication pathways in protein lysine acetyltransferase.

机构信息

State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.

出版信息

Int J Biol Macromol. 2020 Apr 15;149:70-80. doi: 10.1016/j.ijbiomac.2020.01.213. Epub 2020 Jan 25.

Abstract

In bacteria, protein lysine acetylation circuits can control core processes such as carbon metabolism. In E. coli, cyclic adenosine monophosphate (cAMP) controls the transcription level and activity of protein lysine acetyltransferase (PAT). The M. tuberculosis PatA (Mt-PatA) resides in two different conformations; the activated state and autoinhibited state. However, the mechanism of cAMP allosteric regulation of Mt-PatA remains mysterious. Here, we performed extensive all-atom molecular dynamics (MD) simulations (three independent run for each system) and built a residue-residue dynamic correlation network to show how cAMP mediates allosteric activation. cAMP binds at the regulatory site in the regulatory domain, which is 32 Å away from the catalytic site. An extensive conformational restructuring relieves autoinhibition caused by a molecular Lid (residues 161-203) that shelters the substrate-binding surface. In the activated state, the regulatory domain rotates (~40°) around Ser144, which links both domains. Rotation removes the C-terminus from the cAMP site and relieves the autoinhibited state. Also, the molecular Lid refolds and creates an activator binding site. A conserved residue, His173, was mutated into Lys in the Lid, and during an MD trajectory of the activated state, positioned itself near an acetyl donor molecule in the catalytic domain, suggesting a direct mechanism for acetylation. This study describes the allosteric framework for Mt-PatA and prerequisite intermediate states that permit long-distance signal transmission.

摘要

在细菌中,蛋白质赖氨酸乙酰化回路可以控制核心过程,如碳代谢。在大肠杆菌中,环磷酸腺苷 (cAMP) 控制蛋白赖氨酸乙酰转移酶 (PAT) 的转录水平和活性。结核分枝杆菌 PatA (Mt-PatA) 存在于两种不同的构象中;激活状态和自动抑制状态。然而,cAMP 对 Mt-PatA 的变构调节机制仍然神秘。在这里,我们进行了广泛的全原子分子动力学 (MD) 模拟(每个系统进行三次独立运行),并构建了残基-残基动态相关网络,以显示 cAMP 如何介导变构激活。cAMP 结合在调节域的调节位点上,该位点距离催化位点 32 Å。广泛的构象重排缓解了由分子 Lid(残基 161-203)引起的自动抑制,该 Lid 掩盖了底物结合表面。在激活状态下,调节域围绕 Ser144 旋转 (~40°),Ser144 连接两个域。旋转将 C 末端从 cAMP 位点移开,并解除自动抑制状态。此外,分子 Lid 重新折叠并创建激活剂结合位点。保守残基 His173 在 Lid 中突变为 Lys,在激活状态的 MD 轨迹中,它位于催化域中乙酰供体分子附近,表明存在直接的乙酰化机制。本研究描述了 Mt-PatA 的变构框架和允许远距离信号传输的先决中间状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验