Myers Meagan B, McKim Karen L, Wang Yiying, Banda Malathi, Parsons Barbara L
Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
Methods Mol Biol. 2020;2102:395-417. doi: 10.1007/978-1-0716-0223-2_23.
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3'-penultimate mismatch relative to the mutant DNA sequence, but a double 3'-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3'-end and a 3'-penultimate mismatch relative to the wild-type DNA sequence, but a double 3'-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.
等位基因特异性竞争阻断剂PCR(ACB-PCR)是一种用于选择性扩增特定碱基替换的灵敏且定量的方法。利用ACB-PCR技术,热点癌症驱动突变(癌基因和肿瘤抑制基因中的肿瘤相关突变,赋予选择性生长优势)正被开发为癌症风险的定量生物标志物。ACB-PCR采用突变体特异性引物(相对于突变体DNA序列,在3'倒数第二个位置存在错配,但相对于野生型DNA序列,3'末端存在双重错配)来选择性扩增罕见的突变体DNA分子。ACB-PCR中包含一种阻断引物,其3'末端不可延伸,相对于野生型DNA序列在3'倒数第二个位置存在错配,但相对于突变体DNA序列3'末端存在双重错配,以选择性抑制来自丰富野生型分子的扩增。因此,当DNA群体中单个碱基对替换突变以1×10或更高的突变体:野生型比例存在时,ACB-PCR可以对其水平进行定量。通过对未知样品和突变体分数(MF)标准品(突变体和野生型DNA序列的定义混合物)进行平行分析,实现对罕见突变等位基因的定量。对与癌症有已知关联的特定突变进行定量的能力在评估啮齿动物模型中化学暴露的致癌潜力方面有几个重要应用。此外,测量癌症驱动突变亚群对于精准癌症治疗(选择最合适的靶向治疗并预测治疗抗性的发展)很重要。本章逐步描述了用于测量人类PIK3CA密码子1047,CAT→CGT(H1047R)突变的ACB-PCR方法。