Suppr超能文献

基于图像处理的黑色素瘤皮肤癌检测

Melanoma Skin Cancer Detection based on Image Processing.

作者信息

Zghal Nadia Smaoui, Derbel Nabil

机构信息

Industrial Computer, Control and Energy Management Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia.

出版信息

Curr Med Imaging Rev. 2020;16(1):50-58. doi: 10.2174/1573405614666180911120546.

Abstract

BACKGROUND

Skin cancer is one of the most common forms of cancers among humans. It can be classified as non-melanoma and melanoma. Although melanomas are less common than non-melanomas, the former is the most common cause of mortality. Therefore, it becomes necessary to develop a Computer-aided Diagnosis (CAD) aiming to detect this kind of lesion and enable the diagnosis of the disease at an early stage in order to augment the patient's survival likelihood.

AIMS

This paper aims to develop a simple method capable of detecting and classifying skin lesions using dermoscopy images based on ABCD rules.

METHODS

The proposed approach follows four steps. 1) The preprocessing stage consists of filtering and contrast enhancing algorithms. 2) The segmentation stage aims at detecting the lesion. 3) The feature extraction stage based on the calculation of the four parameters which are asymmetry, border irregularity, color and diameter. 4) The classification stage based on the summation of the four extracted parameters multiplied by their weights yields the total dermoscopy value (TDV); hence, the lesion is classified into benign, suspicious or malignant. The proposed approach is implemented in the MATLAB environment and the experiment is based on PH2 database containing suspicious melanoma skin cancer.

RESULTS AND CONCLUSION

Based on the experiment, the accuracy of the developed approach is 90%, which reflects its reliability.

摘要

背景

皮肤癌是人类最常见的癌症形式之一。它可分为非黑色素瘤和黑色素瘤。尽管黑色素瘤比非黑色素瘤少见,但前者是最常见的致死原因。因此,有必要开发一种计算机辅助诊断(CAD)方法,旨在检测这种病变并在疾病早期进行诊断,以提高患者的生存几率。

目的

本文旨在开发一种基于ABCD规则,利用皮肤镜图像检测和分类皮肤病变的简单方法。

方法

所提出的方法包括四个步骤。1)预处理阶段由滤波和对比度增强算法组成。2)分割阶段旨在检测病变。3)特征提取阶段基于不对称性、边界不规则性、颜色和直径这四个参数的计算。4)分类阶段基于四个提取参数与其权重相乘后的总和得出总皮肤镜值(TDV);因此,病变被分类为良性、可疑或恶性。所提出的方法在MATLAB环境中实现,实验基于包含可疑黑色素瘤皮肤癌的PH2数据库。

结果与结论

基于实验,所开发方法的准确率为90%,这反映了其可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验