Suppr超能文献

基于不同神经网络的图像数据集的黑色素瘤皮肤癌分类。

Classification of melanoma skin Cancer based on Image Data Set using different neural networks.

机构信息

School of Natural Sciences, National University of Science and Technology, Islamabad, 46000, Pakistan.

出版信息

Sci Rep. 2024 Nov 29;14(1):29704. doi: 10.1038/s41598-024-75143-4.

Abstract

This paper aims to address the pressing issue of melanoma classification by leveraging advanced neural network models, specifically basic Convolutional Neural Networks (CNN), ResNet-18, and EfficientNet-B0. Our objectives encompass presenting and evaluating these models based on established practices in medical image diagnosis. Additionally, we aim to demonstrate their effectiveness in contributing to the critical task of saving lives through early and accurate melanoma diagnosis.Our methodology involves a multi-stage process, which includes image normalization and augmentation, followed by segmentation, feature extraction, and classification. Notably, the neural network models underwent rigorous evaluation, with EfficientNet-B0 exhibiting exceptional performance as the winning model. EfficientNet-B0 achieved a remarkable accuracy of 97%, surpassing ResNet-18 (87%) and basic CNN (80%) in classifying malignant and benign cases. In addition to accuracy, a comprehensive set of evaluation metrics was employed for EfficientNet-B0: sensitivity of 99%, specificity of 93%, F1-score of 97%, precision of 95%, and an error rate of 3%. It also demonstrated a Mathew's correlation coefficient of 94% and a geometric mean of 1.01. Across these metrics, EfficientNet-B0 consistently outperformed ResNet-18 and basic CNN. The findings from this research suggest that neural network models, particularly EfficientNet-B0, hold significant promise for precise and efficient melanoma skin cancer detection.

摘要

本文旨在利用先进的神经网络模型,特别是基础卷积神经网络(CNN)、ResNet-18 和 EfficientNet-B0,解决黑色素瘤分类这一紧迫问题。我们的目标包括根据医学图像诊断中的既定实践提出和评估这些模型。此外,我们旨在展示它们在通过早期和准确的黑色素瘤诊断来挽救生命的关键任务中的有效性。

我们的方法涉及一个多阶段的过程,包括图像归一化和增强,然后是分割、特征提取和分类。值得注意的是,神经网络模型经过了严格的评估,其中 EfficientNet-B0 作为获胜模型表现出色。EfficientNet-B0 在分类恶性和良性病例方面的准确率达到了 97%,超过了 ResNet-18(87%)和基础 CNN(80%)。除了准确率之外,还为 EfficientNet-B0 采用了一套全面的评估指标:敏感性为 99%、特异性为 93%、F1 得分为 97%、精度为 95%、错误率为 3%。它还显示出 94%的马修斯相关系数和 1.01 的几何平均值。在这些指标中,EfficientNet-B0 始终优于 ResNet-18 和基础 CNN。

这项研究的结果表明,神经网络模型,特别是 EfficientNet-B0,在精确和高效的黑色素瘤皮肤癌检测方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e3d/11607306/17903decfa62/41598_2024_75143_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验