Suppr超能文献

辐射诱导的组织损伤与反应。

Radiation-induced tissue damage and response.

机构信息

Departent of Radiation Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.

出版信息

J Pathol. 2020 Apr;250(5):647-655. doi: 10.1002/path.5389. Epub 2020 Feb 21.

Abstract

Normal tissue responses to ionizing radiation have been a major subject for study since the discovery of X-rays at the end of the 19th century. Shortly thereafter, time-dose relationships were established for some normal tissue endpoints that led to investigations into how the size of dose per fraction and the quality of radiation affected outcome. The assessment of the radiosensitivity of bone marrow stem cells using colony-forming assays by Till and McCulloch prompted the establishment of in situ clonogenic assays for other tissues that added to the radiobiology toolbox. These clonogenic and functional endpoints enabled mathematical modeling to be performed that elucidated how tissue structure, and in particular turnover time, impacted clinically relevant fractionated radiation schedules. More recently, lineage tracing technology, advanced imaging and single cell sequencing have shed further light on the behavior of cells within stem, and other, cellular compartments, both in homeostasis and after radiation damage. The discovery of heterogeneity within the stem cell compartment and plasticity in response to injury have added new dimensions to the consideration of radiation-induced tissue damage. Clinically, radiobiology of the 20th century garnered wisdom relevant to photon treatments delivered to a fairly wide field at around 2 Gy per fraction, 5 days per week, for 5-7 weeks. Recently, the scope of radiobiology has been extended by advances in technology, imaging and computing, as well as by the use of charged particles. These allow radiation to be delivered more precisely to tumors while minimizing the amount of normal tissue receiving high doses. One result has been an increase in the use of schedules with higher doses per fraction given in a shorter time frame (hypofractionation). We are unable to cover these new technologies in detail in this review, just as we must omit low-dose stochastic effects, and many aspects of dose, dose rate and radiation quality. We argue that structural diversity and plasticity within tissue compartments provides a general context for discussion of most radiation responses, while acknowledging many omissions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

摘要

自 19 世纪末发现 X 射线以来,正常组织对电离辐射的反应一直是研究的主要课题。此后不久,就确定了一些正常组织终点的时-量关系,这促使人们研究剂量分割和射线质量如何影响结果。蒂尔(Till)和麦克卢尔(McCulloch)通过集落形成试验评估骨髓干细胞的放射敏感性,这促使人们建立了用于其他组织的原位克隆形成试验,丰富了放射生物学工具包。这些克隆形成和功能终点使能够进行数学建模,阐明组织结构,特别是更新时间,如何影响临床相关的分次照射方案。最近,谱系追踪技术、先进的成像和单细胞测序进一步揭示了干细胞和其他细胞区室中的细胞在体内和辐射损伤后的行为。在干细胞区室中发现异质性以及对损伤的反应性可塑性,为考虑辐射诱导的组织损伤增加了新的维度。从临床角度来看,20 世纪的放射生物学积累了有关在相当宽的野内以约 2 Gy/次的剂量、每周 5 天、5-7 周的时间内进行光子治疗的相关经验。最近,随着技术、成像和计算的进步,以及带电粒子的应用,放射生物学的范围已经扩大。这些进步使放射治疗能够更精确地传递到肿瘤,同时最大限度地减少接受高剂量的正常组织量。其结果是增加了使用高剂量分割方案,即缩短了分割次数。在本综述中,我们无法详细介绍这些新技术,正如我们必须忽略低剂量随机性效应以及剂量、剂量率和射线质量的许多方面一样。我们认为,组织区室的结构多样性和可塑性为讨论大多数辐射反应提供了一个普遍的背景,同时也承认了许多遗漏。© 2020 作者。《病理学杂志》由 John Wiley & Sons Ltd 代表英国和爱尔兰病理学学会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/7216989/4f381a8e533c/PATH-250-647-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验