Suppr超能文献

注意引导卷积神经网络进行图像去噪。

Attention-guided CNN for image denoising.

机构信息

Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China.

Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China; Peng Cheng Laboratory, Shenzhen, 518055, Guangdong, China.

出版信息

Neural Netw. 2020 Apr;124:117-129. doi: 10.1016/j.neunet.2019.12.024. Epub 2020 Jan 7.

Abstract

Deep convolutional neural networks (CNNs) have attracted considerable interest in low-level computer vision. Researches are usually devoted to improving the performance via very deep CNNs. However, as the depth increases, influences of the shallow layers on deep layers are weakened. Inspired by the fact, we propose an attention-guided denoising convolutional neural network (ADNet), mainly including a sparse block (SB), a feature enhancement block (FEB), an attention block (AB) and a reconstruction block (RB) for image denoising. Specifically, the SB makes a tradeoff between performance and efficiency by using dilated and common convolutions to remove the noise. The FEB integrates global and local features information via a long path to enhance the expressive ability of the denoising model. The AB is used to finely extract the noise information hidden in the complex background, which is very effective for complex noisy images, especially real noisy images and bind denoising. Also, the FEB is integrated with the AB to improve the efficiency and reduce the complexity for training a denoising model. Finally, a RB aims to construct the clean image through the obtained noise mapping and the given noisy image. Additionally, comprehensive experiments show that the proposed ADNet performs very well in three tasks (i.e. synthetic and real noisy images, and blind denoising) in terms of both quantitative and qualitative evaluations. The code of ADNet is accessible at https://github.com/hellloxiaotian/ADNet.

摘要

深度卷积神经网络 (CNN) 在低层计算机视觉中引起了极大的兴趣。研究人员通常致力于通过非常深的 CNN 来提高性能。然而,随着深度的增加,浅层对深层的影响会减弱。受此事实启发,我们提出了一种注意力引导去噪卷积神经网络 (ADNet),主要包括稀疏块 (SB)、特征增强块 (FEB)、注意力块 (AB) 和重建块 (RB) 用于图像去噪。具体来说,SB 通过使用扩张和公共卷积来权衡性能和效率,以去除噪声。FEB 通过长路径集成全局和局部特征信息,增强去噪模型的表达能力。AB 用于精细提取隐藏在复杂背景中的噪声信息,对复杂噪声图像非常有效,特别是真实噪声图像和绑定去噪。此外,FEB 与 AB 集成以提高效率并降低训练去噪模型的复杂性。最后,RB 通过获得的噪声映射和给定的噪声图像来构建干净的图像。此外,全面的实验表明,所提出的 ADNet 在三个任务(即合成和真实噪声图像、盲去噪)中都表现得非常出色,无论是在定量评估还是定性评估方面。ADNet 的代码可在 https://github.com/hellloxiaotian/ADNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验