Chung Eugene P, Cotter Jennifer D, Prakapenka Alesia V, Cook Rebecca L, DiPerna Danielle M, Sirianni Rachael W
Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
Pharmaceutics. 2020 Jan 24;12(2):93. doi: 10.3390/pharmaceutics12020093.
Alternative routes of administration are one approach that could be used to bypass the blood-brain barrier (BBB) for effective drug delivery to the central nervous system (CNS). Here, we focused on intranasal delivery of polymer nanoparticles. We hypothesized that surface modification of poly(lactic--glycolic acid) (PLGA) nanoparticles with rabies virus glycoprotein (RVG29) would increase residence time and exposure of encapsulated payload to the CNS compared to non-targeted nanoparticles. Delivery kinetics and biodistribution were analyzed by administering nanoparticles loaded with the carbocyanine dye 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide (DiR) to healthy mice. Intranasal administration yielded minimal exposure of nanoparticle payload to most peripheral organs and rapid, effective delivery to whole brain. Regional analysis of payload delivery within the CNS revealed higher delivery to tissues closest to the trigeminal nerve, including the olfactory bulb, striatum, midbrain, brainstem, and cervical spinal cord. RVG29 surface modifications presented modest targeting benefits to the striatum, midbrain, and brainstem 2 h after administration, although targeting was not observed 30 min or 6 h after administration. Payload delivery to the trigeminal nerve was 3.5× higher for targeted nanoparticles compared to control nanoparticles 2 h after nanoparticle administration. These data support a nose-to-brain mechanism of drug delivery that closely implicates the trigeminal nerve for payload delivery from nanoparticles via transport of intact nanoparticles and eventual diffusion of payload. Olfactory and CSF routes are also observed to play a role. These data advance the utility of targeted nanoparticles for nose-to-brain drug delivery of lipophilic payloads and provide mechanistic insight to engineer effective delivery vectors to treat disease in the CNS.
其他给药途径是一种可用于绕过血脑屏障(BBB)以实现向中枢神经系统(CNS)有效给药的方法。在此,我们专注于聚合物纳米颗粒的鼻内给药。我们假设用狂犬病病毒糖蛋白(RVG29)对聚乳酸 - 乙醇酸共聚物(PLGA)纳米颗粒进行表面修饰,与非靶向纳米颗粒相比,会增加包封的有效载荷在中枢神经系统中的停留时间和暴露量。通过向健康小鼠施用负载花菁染料1,1'-二辛基 - 3,3,3',3'-四甲基吲哚三碳菁碘化物(DiR)的纳米颗粒来分析给药动力学和生物分布。鼻内给药使纳米颗粒有效载荷在大多数外周器官中的暴露降至最低,并能快速、有效地输送至全脑。对中枢神经系统内有效载荷递送的区域分析显示,向最靠近三叉神经的组织,包括嗅球、纹状体、中脑、脑干和颈脊髓的递送量更高。RVG29表面修饰在给药后2小时对纹状体、中脑和脑干呈现出适度的靶向益处,尽管在给药后30分钟或6小时未观察到靶向作用。与对照纳米颗粒相比,给药后2小时,靶向纳米颗粒向三叉神经的有效载荷递送量高3.5倍。这些数据支持了一种鼻到脑的给药机制,该机制与通过完整纳米颗粒的转运以及有效载荷的最终扩散将有效载荷从纳米颗粒递送至三叉神经密切相关。还观察到嗅觉和脑脊液途径也发挥作用。这些数据提高了靶向纳米颗粒用于亲脂性有效载荷鼻到脑给药的效用,并为设计有效的递送载体以治疗中枢神经系统疾病提供了机制性见解。