Sahin Hakan, Yucel Oguz, Holloway Paul, Yildirim Eren, Emik Serkan, Gurdag Gulten, Tanriverdi Gamze, Erkanli Senturk Gozde
Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey.
Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey.
Pharmaceuticals (Basel). 2024 Nov 22;17(12):1567. doi: 10.3390/ph17121567.
: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. : Poly(lactide--glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. : At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. : Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels.
血脑屏障(BBB)的关键组成部分是内皮细胞、周细胞、星形胶质细胞和毛细血管基底膜。血脑屏障是药物输送到大脑的主要屏障,也是体内最具限制性的内皮屏障。几乎所有的大型治疗性分子和90%以上的小分子药物都无法穿过血脑屏障。为了克服这一挑战,纳米技术,特别是纳米颗粒(NPs)等药物递送系统受到了广泛关注。合成了聚(丙交酯-乙交酯)(PLGA)和基于白蛋白的纳米颗粒(牛/人),有无转铁蛋白(Tf)配体(BSA、HSA、BSA-Tf、HSA-Tf),以及纳米脂质载体(NLC)。分析了这些纳米颗粒与人脑微血管内皮细胞(hBMECs)、人脑血管周细胞(hBVPs)和人星形胶质细胞(hASTROs)的相互作用。在15.62 µg/mL、31.25 µg/mL和62.5 µg/mL的剂量下,孵育3小时后,所有纳米颗粒均未对hBMECs、hBVPs或hASTROs产生毒性作用。所有纳米颗粒都被细胞内化,但BSA-Tf和HSA-Tf在hBMECs中的摄取量以剂量依赖的方式显著更高。超微结构分析揭示了纳米颗粒制剂和细胞类型之间存在显著差异。我们的研究结果强调了配体靶向纳米颗粒与血脑屏障内皮细胞选择性相互作用的潜力。超微结构分析揭示了不同纳米颗粒制剂在血脑屏障相关细胞类型中的不同细胞处理途径,自噬成为周细胞和星形胶质细胞中纳米颗粒处理的关键机制。生物暴露后纳米颗粒化学性质的变化给纳米医学设计带来了重大挑战,强调需要进一步研究纳米颗粒在细胞和亚细胞水平上的相互作用。