Wu Yu, Rakotoarisoa Miora, Angelov Borislav, Deng Yuru, Angelova Angelina
CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France.
Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
Nanomaterials (Basel). 2022 Jun 30;12(13):2267. doi: 10.3390/nano12132267.
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide-drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
要使纳米医学和精准医学在神经退行性疾病治疗中实现具有挑战性的应用,需要对纳米载体介导的生物分子递送进行更深入的研究,以实现神经元靶向和恢复。大分子生物治疗药物(重组生长因子、抗体、酶、合成肽、细胞穿透肽 - 药物偶联物和RNAi序列)在神经元再生临床开发中的成功应用应受益于近期提高其生物利用度的策略。我们重点介绍了用于神经退行性疾病药物递送的纳米级材料的开发进展。重点是使用不同类型的脂质纳米载体(脂质体、液晶或固体脂质纳米颗粒)以及基于聚合物的支架、纳米纤维和水凝胶来递送脑源性神经营养因子(BDNF)的纳米制剂。自组装软物质纳米级材料在向中枢和外周神经系统递送药物方面显示出良好的神经保护特性、安全性和有效性。这里总结的进展表明,负载神经保护生物分子的纳米颗粒和可注射水凝胶可以提高神经元存活率并减少组织损伤。最近在长期感染新冠病毒的幸存者中报道的某些神经元功能障碍是神经退行性病变的早期表现。因此,BDNF递送系统也可能有助于对长期新冠病毒神经并发症恢复的前瞻性研究,并被视为个性化治疗神经元功能障碍以及预防或延缓神经退行性疾病的有前景的系统。