Suppr超能文献

基于压阻式碳纳米纤维的仿纤毛流量传感器。

Piezoresistive Carbon Nanofiber-Based Cilia-Inspired Flow Sensor.

作者信息

Sengupta Debarun, Trap Duco, Kottapalli And Ajay Giri Prakash

机构信息

Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.

MIT Sea Grant College Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139 Cambridge, USA.

出版信息

Nanomaterials (Basel). 2020 Jan 26;10(2):211. doi: 10.3390/nano10020211.

Abstract

Evolving over millions of years, hair-like natural flow sensors called cilia, which are found in fish, crickets, spiders, and inner ear cochlea, have achieved high resolution and sensitivity in flow sensing. In the pursuit of achieving such exceptional flow sensing performance in artificial sensors, researchers in the past have attempted to mimic the material, morphological, and functional properties of biological cilia sensors, to develop MEMS-based artificial cilia flow sensors. However, the fabrication of bio-inspired artificial cilia sensors involves complex and cumbersome micromachining techniques that lay constraints on the choice of materials, and prolongs the time taken to research, design, and fabricate new and novel designs, subsequently increasing the time-to-market. In this work, we establish a novel process flow for fabricating inexpensive, yet highly sensitive, cilia-inspired flow sensors. The artificial cilia flow sensor presented here, features a cilia-inspired high-aspect-ratio titanium pillar on an electrospun carbon nanofiber (CNF) sensing membrane. Tip displacement response calibration experiments conducted on the artificial cilia flow sensor demonstrated a lower detection threshold of 50 µm. Furthermore, flow calibration experiments conducted on the sensor revealed a steady-state airflow sensitivity of 6.16 mV/(m s) and an oscillatory flow sensitivity of 26 mV/(m s), with a lower detection threshold limit of 12.1 mm/s in the case of oscillatory flows. The flow sensing calibration experiments establish the feasibility of the proposed method for developing inexpensive, yet sensitive, flow sensors; which will be useful for applications involving precise flow monitoring in microfluidic devices, precise air/oxygen intake monitoring for hypoxic patients, and other biomedical devices tailored for intravenous drip/urine flow monitoring. In addition, this work also establishes the applicability of CNFs as novel sensing elements in MEMS devices and flexible sensors.

摘要

毛发状的天然流量传感器——纤毛,经过数百万年的进化,存在于鱼类、蟋蟀、蜘蛛以及内耳耳蜗中,在流量传感方面已具备高分辨率和灵敏度。为了在人工传感器中实现如此卓越的流量传感性能,过去的研究人员试图模仿生物纤毛传感器的材料、形态和功能特性,以开发基于微机电系统(MEMS)的人工纤毛流量传感器。然而,受生物启发的人工纤毛传感器的制造涉及复杂且繁琐的微加工技术,这限制了材料的选择,并延长了研究、设计和制造新颖设计所需的时间,进而增加了产品上市时间。在这项工作中,我们建立了一种新颖的工艺流程,用于制造价格低廉但灵敏度高的、受纤毛启发的流量传感器。这里展示的人工纤毛流量传感器,其特点是在静电纺丝碳纳米纤维(CNF)传感膜上有一个受纤毛启发的高纵横比钛柱。在人工纤毛流量传感器上进行的尖端位移响应校准实验表明,检测阈值低至50微米。此外,在该传感器上进行的流量校准实验显示,稳态气流灵敏度为6.16毫伏/(米·秒),振荡气流灵敏度为26毫伏/(米·秒),在振荡气流情况下检测阈值下限为12.1毫米/秒。流量传感校准实验证明了所提出的方法用于开发价格低廉但灵敏的流量传感器的可行性;这将有助于涉及微流控设备中精确流量监测、缺氧患者精确空气/氧气吸入监测以及为静脉滴注/尿液流量监测量身定制的其他生物医学设备的应用。此外,这项工作还确立了碳纳米纤维作为微机电系统设备和柔性传感器中新型传感元件的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c5/7074942/ea07023e3388/nanomaterials-10-00211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验