Suppr超能文献

通过进化时间在山龙眼科中发现环境与气孔大小之间的联系。

Links between environment and stomatal size through evolutionary time in Proteaceae.

机构信息

Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.

School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.

出版信息

Proc Biol Sci. 2020 Jan 29;287(1919):20192876. doi: 10.1098/rspb.2019.2876.

Abstract

The size of plant stomata (adjustable pores that determine the uptake of CO and loss of water from leaves) is considered to be evolutionarily important. This study uses fossils from the major Southern Hemisphere family Proteaceae to test whether stomatal cell size responded to Cenozoic climate change. We measured the length and abundance of guard cells (the cells forming stomata), the area of epidermal pavement cells, stomatal index and maximum stomatal conductance from a comprehensive sample of fossil cuticles of Proteaceae, and extracted published estimates of past temperature and atmospheric CO. We developed a novel test based on stochastic modelling of trait evolution to test correlations among traits. Guard cell length increased, and stomatal density decreased significantly with decreasing palaeotemperature. However, contrary to expectations, stomata tended to be smaller and more densely packed at higher atmospheric CO. Thus, associations between stomatal traits and palaeoclimate over the last 70 million years in Proteaceae suggest that stomatal size is significantly affected by environmental factors other than atmospheric CO. Guard cell length, pavement cell area, stomatal density and stomatal index covaried in ways consistent with coordinated development of leaf tissues.

摘要

植物气孔(决定叶片吸收 CO 和水分损失的可调孔)的大小被认为在进化上很重要。本研究利用来自南半球主要科植物科的化石来检验气孔细胞大小是否对新生代气候变化有响应。我们从植物科的化石表皮样本中测量了保卫细胞(形成气孔的细胞)的长度和丰度、表皮铺砌细胞的面积、气孔指数和最大气孔导度,并提取了过去温度和大气 CO 的已发表估计值。我们开发了一种新的测试方法,基于特征进化的随机模型来测试特征之间的相关性。随着古温度的降低,保卫细胞长度增加,气孔密度显著降低。然而,与预期相反的是,在较高的大气 CO 下,气孔往往更小,更密集。因此,过去 7000 万年以来在植物科中气孔特征与古气候之间的关联表明,气孔大小受到大气 CO 以外的环境因素的显著影响。保卫细胞长度、铺砌细胞面积、气孔密度和气孔指数以与叶片组织协调发育一致的方式共同变化。

相似文献

1
Links between environment and stomatal size through evolutionary time in Proteaceae.
Proc Biol Sci. 2020 Jan 29;287(1919):20192876. doi: 10.1098/rspb.2019.2876.
3
Environmental adaptation in stomatal size independent of the effects of genome size.
New Phytol. 2015 Jan;205(2):608-17. doi: 10.1111/nph.13076. Epub 2014 Sep 30.
4
Unified changes in cell size permit coordinated leaf evolution.
New Phytol. 2013 Jul;199(2):559-570. doi: 10.1111/nph.12300. Epub 2013 May 7.
5
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10343-7. doi: 10.1073/pnas.0904209106. Epub 2009 Jun 8.
6
Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
Oecologia. 2021 Dec;197(4):867-883. doi: 10.1007/s00442-021-04857-3. Epub 2021 Jan 30.
8
Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
Biol Rev Camb Philos Soc. 2019 Jun;94(3):1179-1194. doi: 10.1111/brv.12497. Epub 2019 Feb 4.
9
From reproduction to production, stomata are the master regulators.
Plant J. 2020 Feb;101(4):756-767. doi: 10.1111/tpj.14561. Epub 2019 Nov 7.

引用本文的文献

1
AusTraits, a curated plant trait database for the Australian flora.
Sci Data. 2021 Sep 30;8(1):254. doi: 10.1038/s41597-021-01006-6.
2
Phylogenetic history of vascular plant metabolism revealed using a macroevolutionary common garden.
Proc Biol Sci. 2021 Jun 9;288(1952):20210605. doi: 10.1098/rspb.2021.0605. Epub 2021 Jun 2.

本文引用的文献

1
Plant carbon assimilation rates in atmospheric CO reconstructions.
New Phytol. 2019 Sep;223(4):1844-1855. doi: 10.1111/nph.15914. Epub 2019 Jun 26.
2
Comparing optimal and empirical stomatal conductance models for application in Earth system models.
Glob Chang Biol. 2018 Dec;24(12):5708-5723. doi: 10.1111/gcb.14445. Epub 2018 Oct 19.
3
Genome downsizing, physiological novelty, and the global dominance of flowering plants.
PLoS Biol. 2018 Jan 11;16(1):e2003706. doi: 10.1371/journal.pbio.2003706. eCollection 2018 Jan.
6
Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
Nature. 2016 May 19;533(7603):380-4. doi: 10.1038/nature17423. Epub 2016 Apr 25.
7
Optimal allocation of leaf epidermal area for gas exchange.
New Phytol. 2016 Jun;210(4):1219-28. doi: 10.1111/nph.13929. Epub 2016 Mar 16.
8
Model Adequacy and the Macroevolution of Angiosperm Functional Traits.
Am Nat. 2015 Aug;186(2):E33-50. doi: 10.1086/682022. Epub 2015 Jun 12.
9
Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia.
Am J Bot. 2015 Dec;102(12):2092-107. doi: 10.3732/ajb.1500343. Epub 2015 Dec 7.
10
Linked canopy, climate, and faunal change in the Cenozoic of Patagonia.
Science. 2015 Jan 16;347(6219):258-61. doi: 10.1126/science.1260947.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验